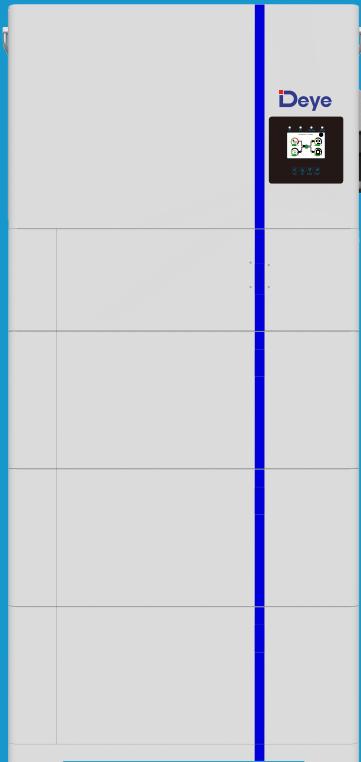


ALL IN ONE ESS

Low Voltage

AI-W5.1-3.6P1-EU-B-ESS

AI-W5.1-5P1-EU-B-ESS


AI-W5.1-6P1-EU-B-ESS

AI-W5.1-7P1-EU-B-ESS

AI-W5.1-7.6P1-EU-B-ESS

AI-W5.1-8P1-EU-B-ESS

User Manual

Contents

1. Safety Introductions	01
2. Product instructions	02-04
2.1 Product Overview		
2.2 Product Size		
2.3 Product Features		
2.4 Basic System Architecture		
2.5 Product handling requirements		
3. Installation	04-25
3.1 Parts list		
3.2 Mounting instructions		
3.3 Battery connection		
3.4 Grid connection and backup load connection		
3.5 PV Connection		
3.6 CT Connection		
3.6.1 Meter Connection		
3.7 Earth Connection(mandatory)		
3.8 WIFI Connection		
3.9 Wiring System for Inverter		
3.10 Typical application diagram of diesel generator		
3.11 Single phase parallel connection diagram		
3.12 Three phase Parallel Inverter		
4. OPERATION	26
4.1 Power ON/OFF		
4.2 Operation and Display Panel		
5. LCD Display Icons	27-39
5.1 Main Screen		
5.2 Solar Power Curve		
5.3 Curve Page-Solar & Load & Grid		
5.4 System Setup Menu		
5.5 Basic Setup Menu		
5.6 Battery Setup Menu		
5.7 System Work Mode Setup Menu		
5.8 Grid Setup Menu		
5.9 Generator Port Use Setup Menu		
5.10 Advanced Function Setup Menu		
5.11 Device Info Setup Menu		
6. Mode	39-41
7. Fault information and processing	41-44
8. Limitation of Liability	44
9. Datasheet	45-46
10. Appendix I	47-49
11. Appendix II	50
12. EU Declaration of Conformity	50-51

	Model
Inverter	AI-W5.1-3.6/5/6/7/7.6/8P1-EU-B
Battery System	AI-W5.1-B

About This Manual

The manual mainly describes the product information, guidelines for installation, operation and maintenance. The manual cannot include complete information about the photovoltaic (PV) system.

How to Use This Manual

Read the manual and other related documents before performing any operation on the inverter. Documents must be stored carefully and be available at all times.

Contents may be periodically updated or revised due to product development. The information in this manual is subject to change without notice. The latest manual can be acquired via service@deye.com.cn

1. Safety Introductions

Safety signs

The DC input terminals of the inverter must not be grounded.

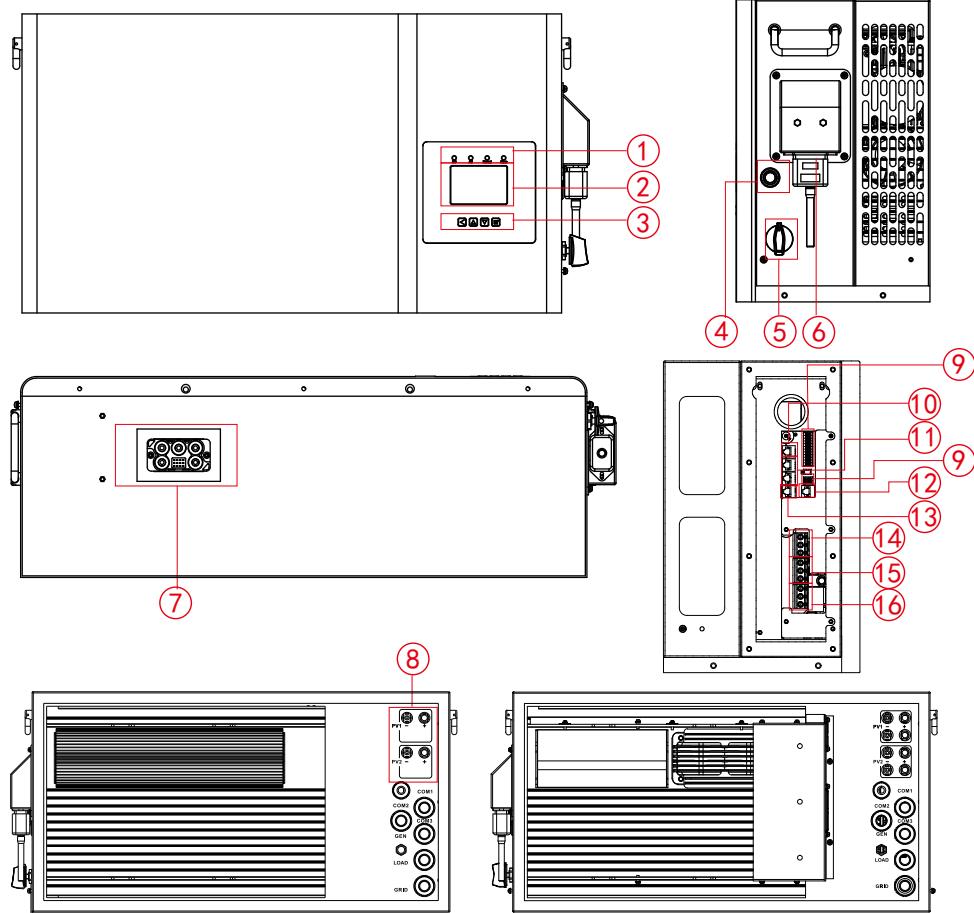
Surface high temperature, Please do not touch the inverter case.

The AC and DC circuits must be disconnected separately, and the maintenance personnel must wait for 5 minutes before they are completely powered off before they can start working.

Prohibit disassembling inverter case, there existing shock hazard, which may cause serious injury or death, please ask qualified person to repair.

Please read the instructions carefully before use.

Do Not put it in the waste bin! Recycle it by licensed professional!


- This chapter contains important safety and operating instructions. Read and keep this manual for future reference.
- Before using the inverter, please read the instructions and warning signs of the battery and corresponding sections in the instruction manual.
- Do not disassemble the inverter. If you need maintenance or repair, take it to a professional service center.
- Improper reassembly may result in electric shock or fire.
- To reduce risk of electric shock, disconnect all wires before attempting any maintenance or cleaning. Turning off the unit will not reduce this risk.
- Caution: Only qualified personnel can install this device with battery.
- Battery needs to be recharged within 48 hours after fully discharged.
- Never charge a frozen battery.
- For optimum operation of this inverter, please follow required specification to select appropriate cable size. It is very important to correctly operate this inverter.
- Be very cautious when working with metal tools on or around batteries. Dropping a tool may cause a spark or short circuit in batteries or other electrical parts, even cause an explosion.
- Please strictly follow installation procedure when you want to disconnect AC or DC terminals. Please refer to "Installation" section of this manual for the details.
- Grounding instructions - this inverter should be connected to a permanent grounded wiring system. Be sure to comply with local requirements and regulation to install this inverter.
- Never cause AC output and DC input short circuited. Do not connect to the mains when DC input short circuits.

2. Product Introductions

This is an All-in-one energy storage system, integrated 3.6kW~8kW hybrid inverters and energy storage batteries. Modular stacked design, easy installation, easy expansion, capacity range of 5kWh to 30kWh. Lithium iron phosphate battery, safe and reliable.

This is a multifunctional inverter, combining functions of inverter, solar charger and battery charger to offer uninterrupted power support with portable size. Its comprehensive LCD display offers user configurable and easy accessible button operation such as battery charging, AC/solar charging, and acceptable input voltage based on different applications.

2.1 Product Overview

1: Inverter indicators

2: LCD display

3: Function buttons

4: Power on/off button

5: DC switch

6: WiFi Interface

7: Battery input connectors

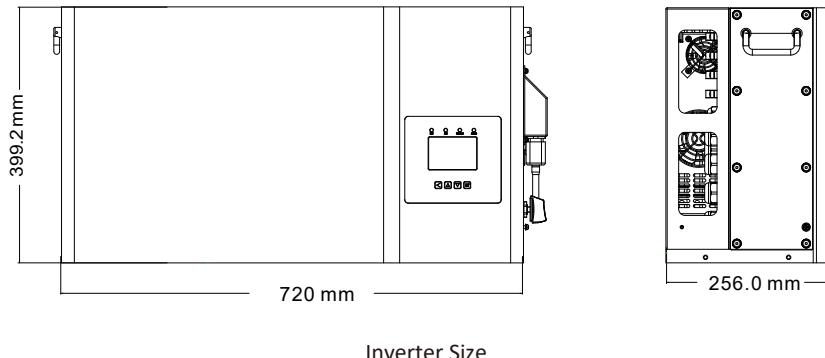
8: PV input with two MPPT

9: Function port

10: RS485/METER port

11: Parallel port

12: BMS 485/CAN port


13: DRMs port

14: Generator port

15: Load port

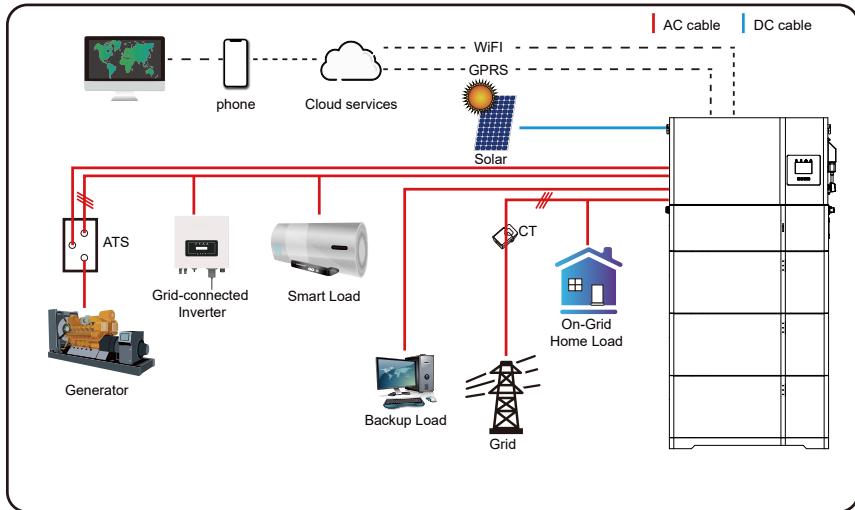
16: Grid port

2.2 Product Size

2.3 Product Features

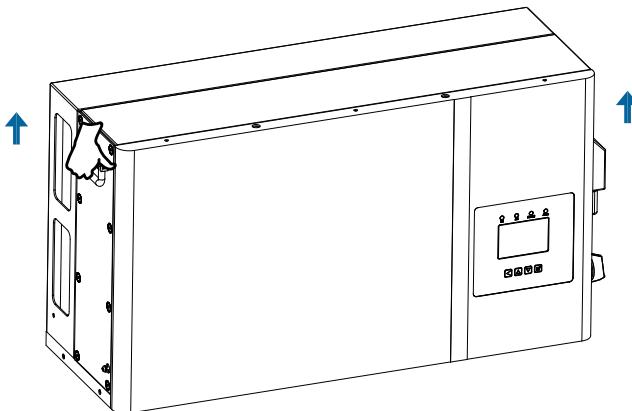
- Self-consumption and feed-in to the grid.
- Auto restart while AC is recovering.
- Programmable supply priority for battery or grid.
- Programmable multiple operation modes: On grid, off grid and UPS.
- Configurable battery charging current/voltage based on applications by LCD setting.
- Configurable AC/Solar/Generator Charger priority by LCD setting.
- Compatible with mains voltage or generator power.
- Overload/over temperature/short circuit protection.
- Smart battery charger design for optimized battery performance
- With limit function, prevent excess power overflow to the grid.
- Supporting WIFI monitoring and build-in 2 strings of MPP trackers
- Smart settable three stages MPPT charging for optimized battery performance.
- Time of use function.
- Smart Load Function.

2.4 Basic System Architecture


The following illustration shows basic application of this inverter.

It also includes following devices to have a Complete running system.

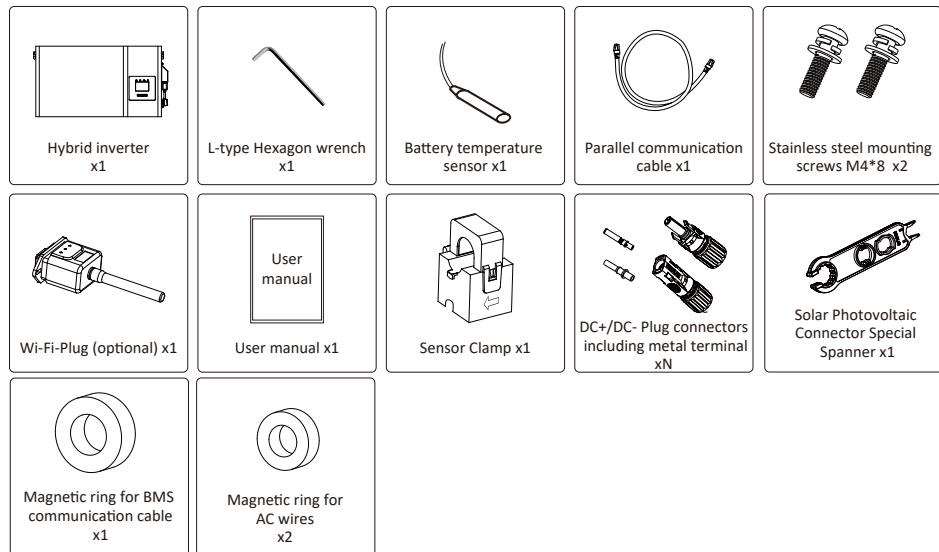
- Generator or Utility
- PV modules


Consult with your system integrator for other possible system architectures depending on your requirements.

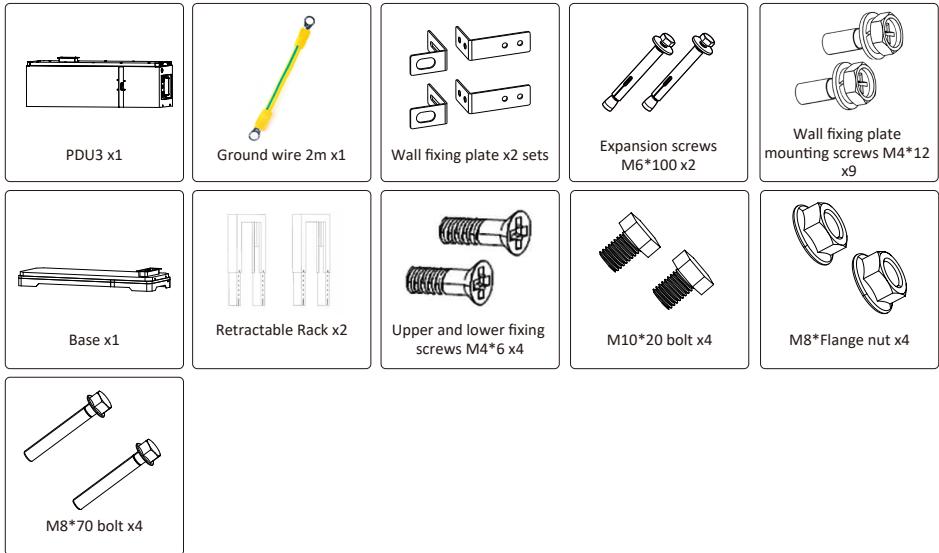
This inverter can power all kinds of appliances in home or office environment, including motor type appliances such as refrigerator and air conditioner.

2.5 Product handling requirements

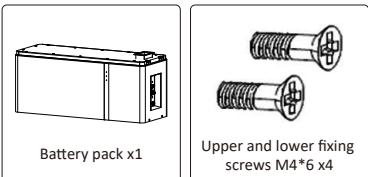
Two people stand on both sides of the machine, holding one handles to lift the machine.



3. Installation

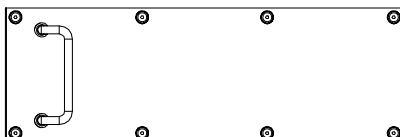
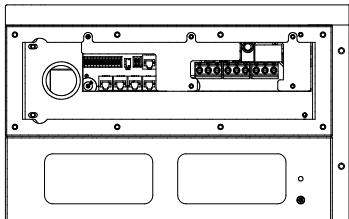

3.1 Parts List

Check the equipment before installation. Please make sure nothing is damaged in the package. You should have received the items in the following package:

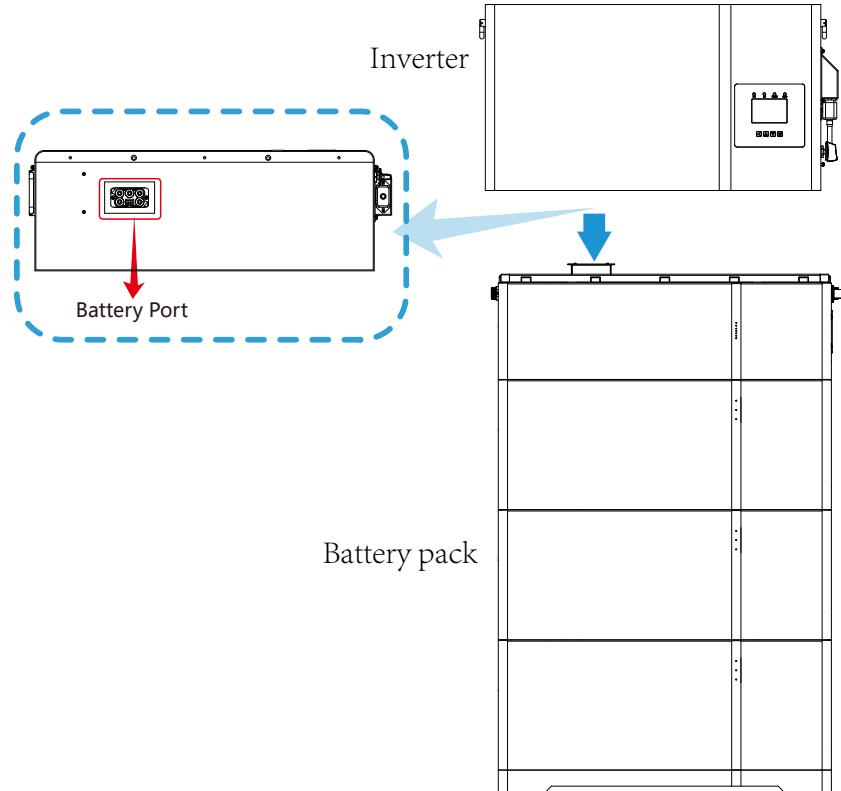

Inverter package

System Power Distribute Unit packaging box

Li-ion Battery Pack packaging box



3.2 Mounting instructions

Installation Precaution

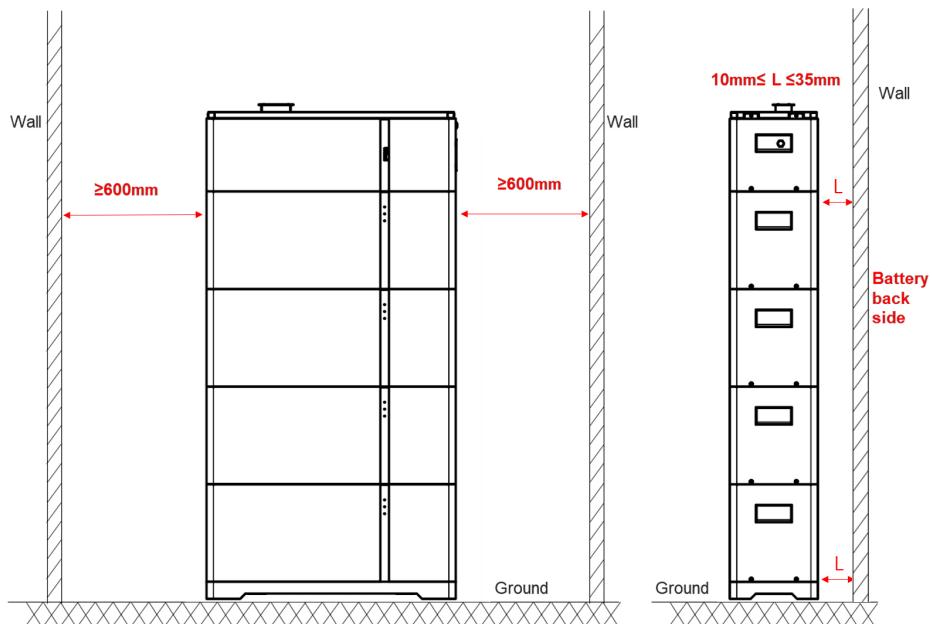

This Hybrid inverter is designed for outdoor use(IP65), Please make sure the installation site meets below conditions:

- Not in direct sunlight
- Not in areas where highly flammable materials are stored.
- Not in potential explosive areas.
- Not in the cool air directly.
- Not near the television Antenna or antenna cable.
- Not higher than altitude of about 2000 meters above sea level.
- Not in environment of precipitation or humidity(>95%)

Please AVOID direct sunlight, rain exposure, snow laying up during installation and operation. Before connecting all wires, please take off the metal cover by removing screws as shown below:

3.3 Battery connection

3.3.1 Install the Battery

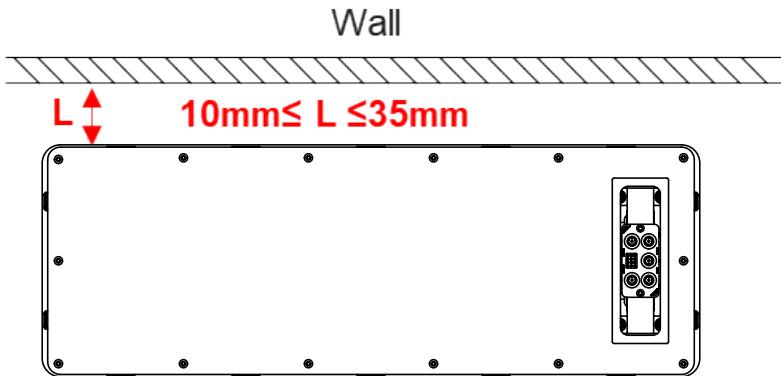

CAUTION:

Remember that this battery is heavy! Please be careful when lifting out from the package.

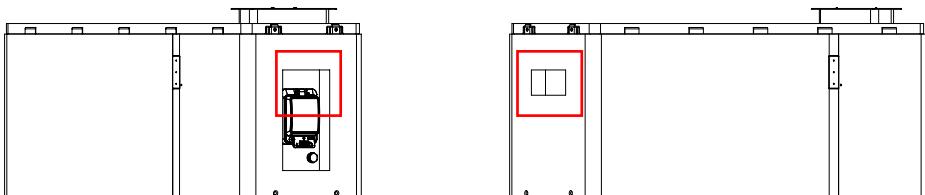
The battery module must be installed by at least two persons using movable handles.

3.3.1.1 Selection of installation sites

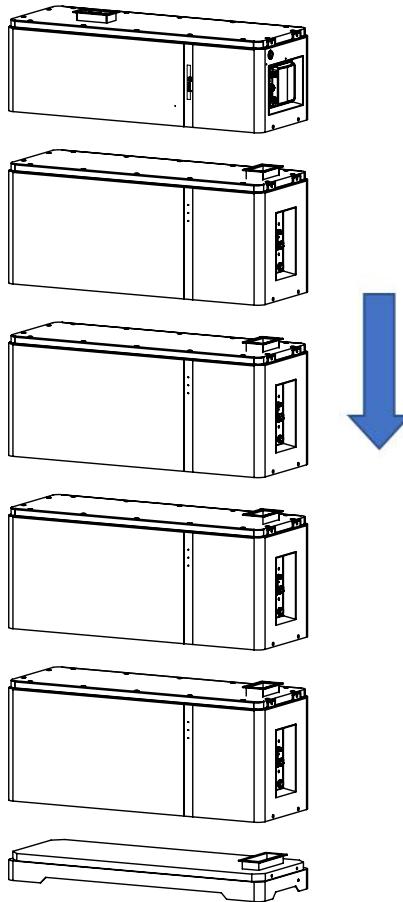
It is necessary to choose the appropriate installation location site according to the requirements. Batteries should be installed in a clean flat place with no direct sunlight, away from water and fire sources, and at a suitable temperature. The installation location is recommended to meet the size requirements of the figure below:

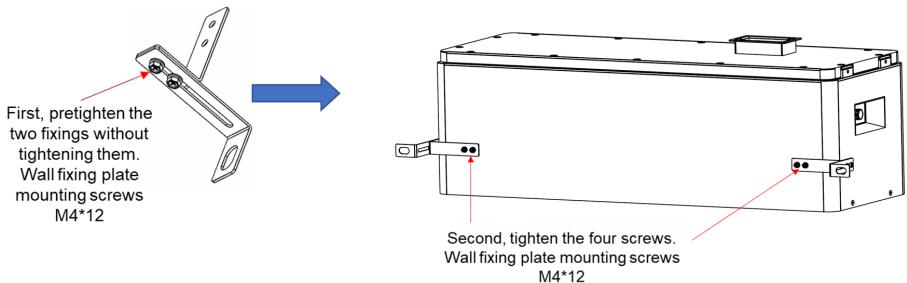


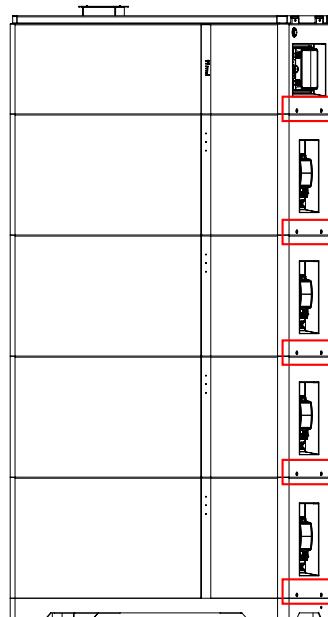
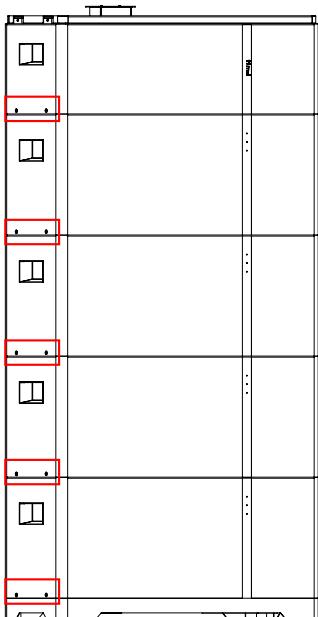
3.3.1.2 Unpacking order

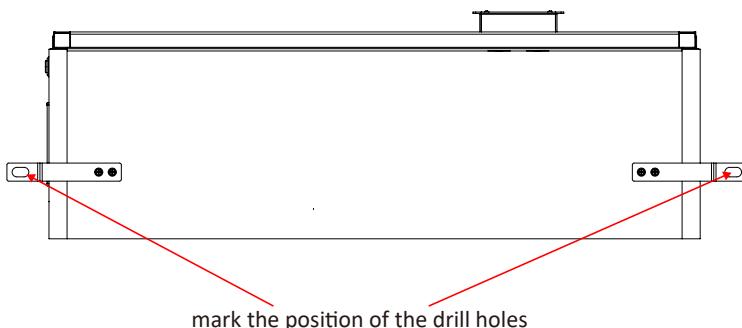

First open the box of System Power Distribute Unit, take out the base and handle. The handle is used to carry the battery module, without the handle the battery module will be difficult to remove from the battery box.

3.3.1.3 Installation order

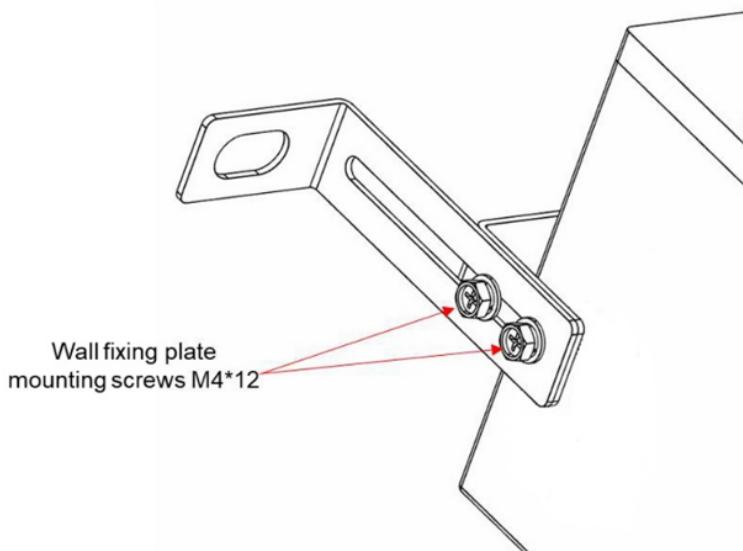

- i. Put the installed base along the wall, and keep the distance of 10~35 mm between the wall and the base.


- ii. Open the battery box, take a battery module out. Hold the handle of both batteries with your hands easy for lifting. Put one battery module on the base. Insert the plug on the base into the port on the battery. Pay attention to the direction of the module to make sure that the blind-mating connectors of the module and the base are at the same side.



iii. Plug the upper battery module connector into the lower battery connector. Repeat the operations for other battery modules.

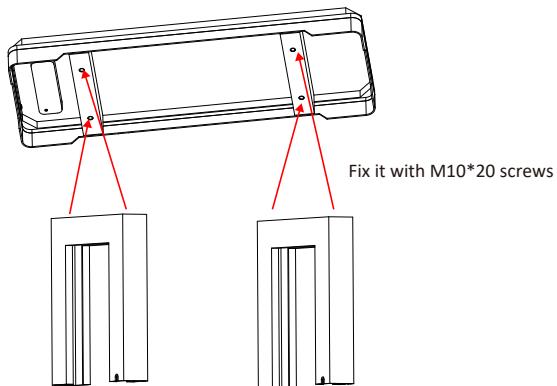

iv. Install the wall fixing plate (PDU part) to the PDU. To do this, follow the instructions below to install and tighten them on the back side of PDU (torque: 2 Nm).

- v. After all battery modules are stacked, put the PDU on top of the battery modules.
- vi. Fix the connection between the battery module and the base, between battery modules, and between PDU and battery module with screws (M4*6). To do this, use a Phillips screwdriver to tighten the screws through the holes on them.

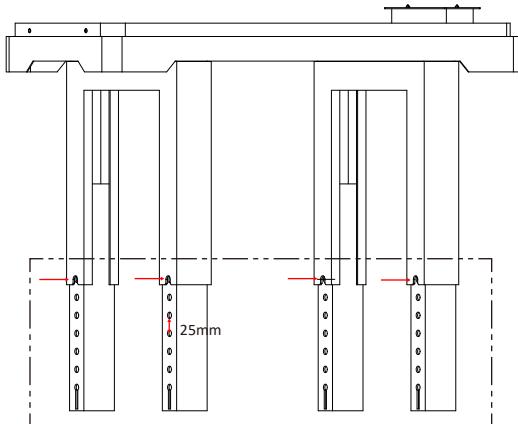


- vii. Hold the wall fixing plate (wall part) where it intends to be mounted on the wall and mark the position of the drill holes. Please pay attention that there may be power cables or other supply lines (e.g., gas or water) routed inside of the wall. Ensure that no lines are laid in the wall, which could be damaged when drilling holes.

viii. Set the wall fixing plate (wall part) aside and drill the marked holes. Choose the recommend drill head (10mm) to drill 2 holes on the wall, 100mm-110mm deep. Put the wall fixing plate (wall part) in front of the holes, then insert the expansion screw of M6*100 and tighten.


ix. Fix the two hangers (wall part and PDU part) with M4X12 screws, using a cylinder screwdriver (10 mm) to tighten it (torque: 2 Nm).

3.3.1.2 Floor-mounted method 2

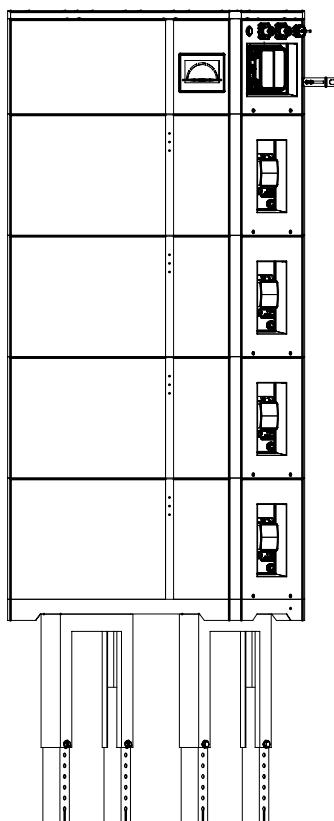

Step 1

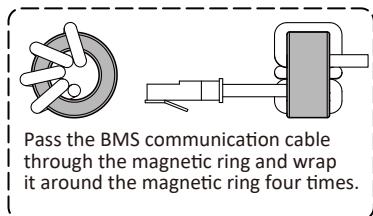
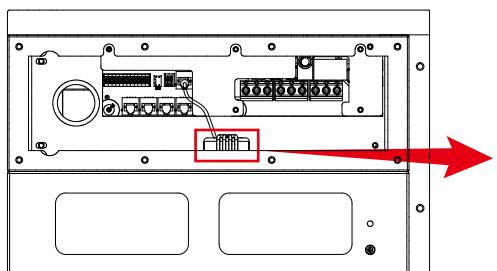
First, fix the support and base with screws(M10*20).

Step 2

Fix the height of the expansion frame with screws(M8*70).

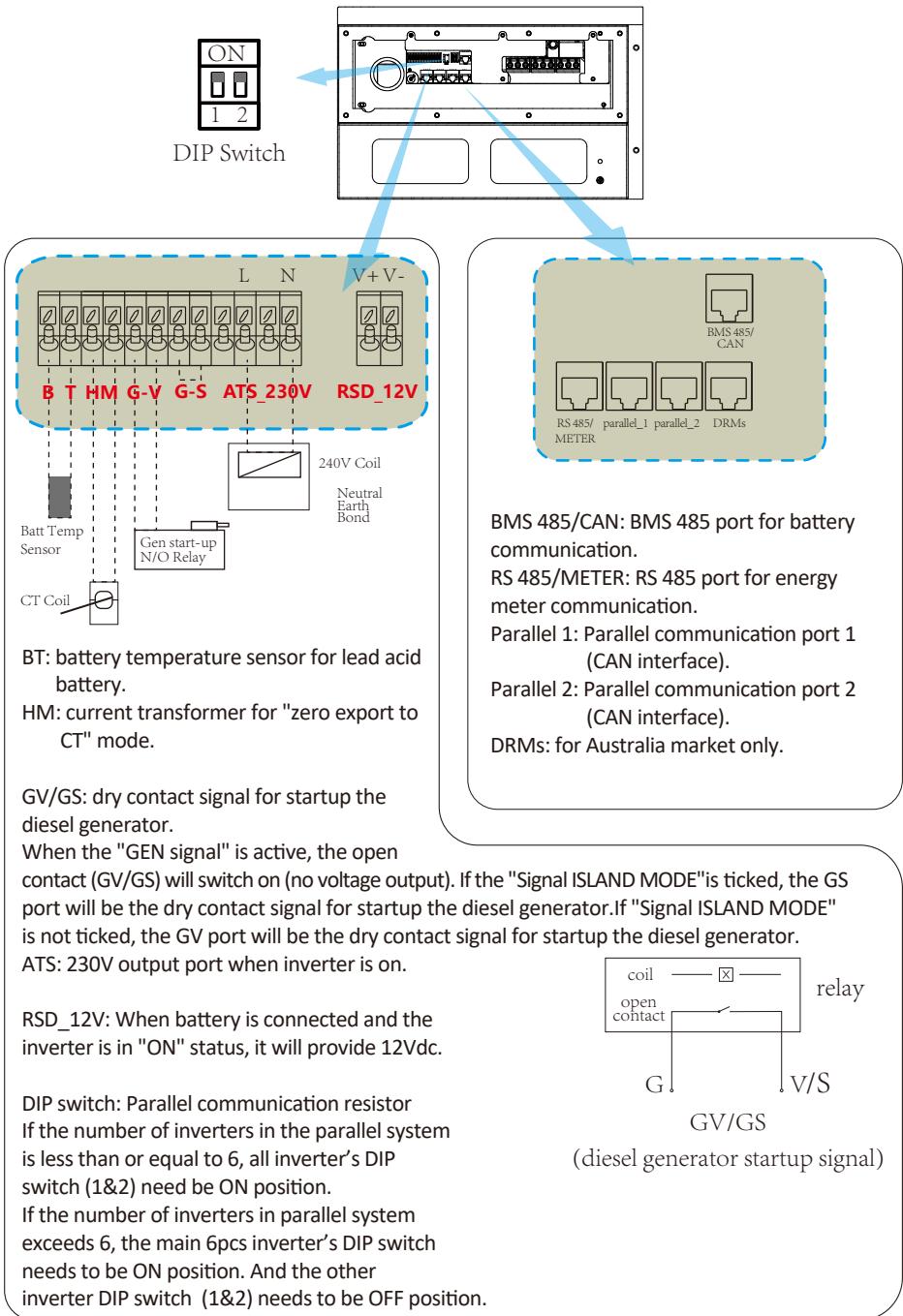
The distance between the holes of the retractable support is 25mm.


The maximum length of the retractable bracket is 485mm and the minimum length is 335mm.
Retractable legs (dashed frame) are optional and can be added according to demand.

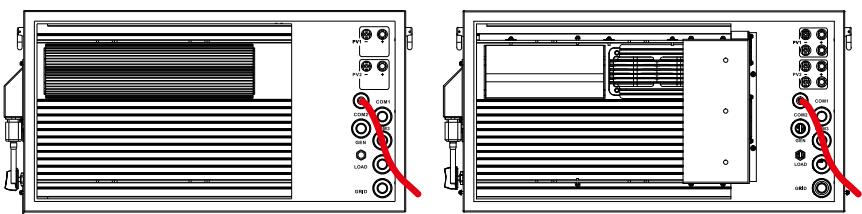
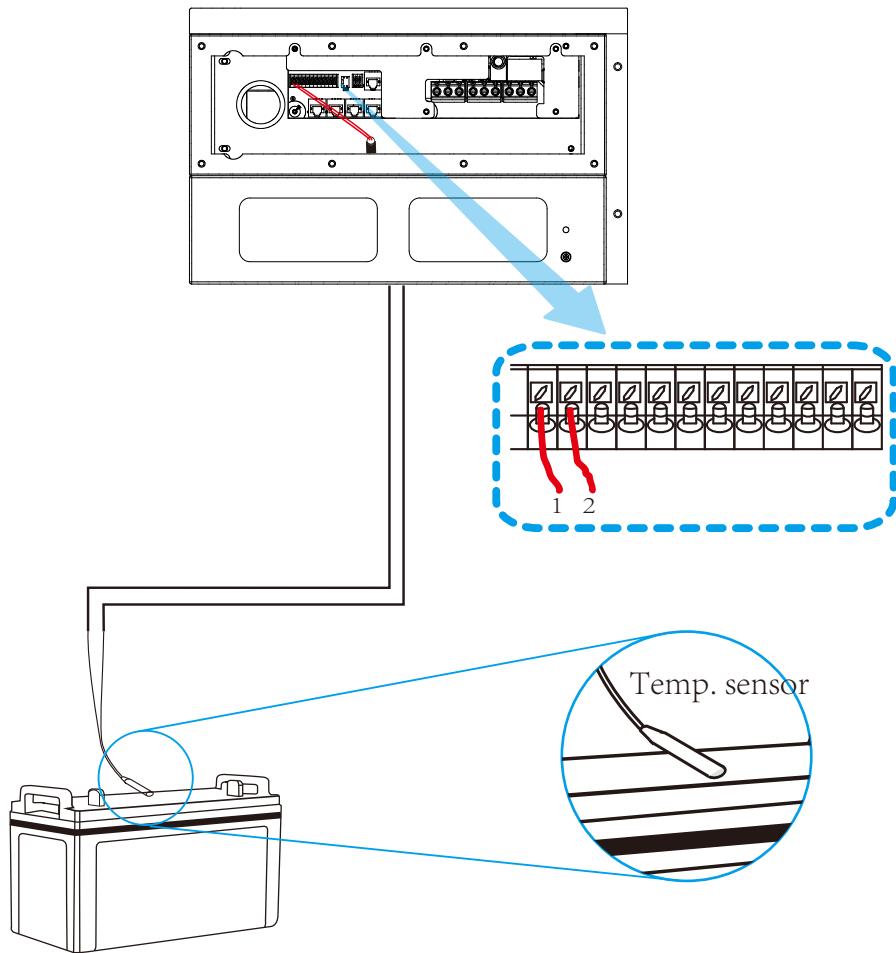


Step 3

Stack battery packs to complete the installation

And make sure the wall fixing plate is attached to the wall.



3.3.2 BMS communication

Pass the BMS communication cable through the magnetic ring and wrap it around the magnetic ring four times.

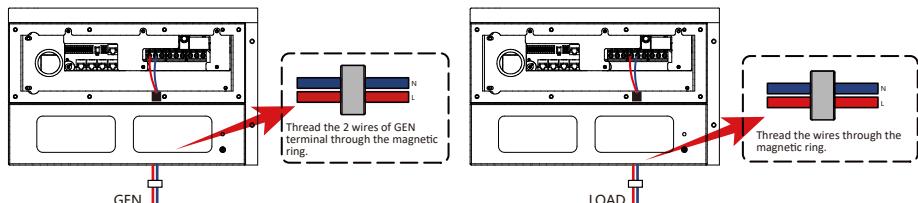
3.3.3 Function port definition

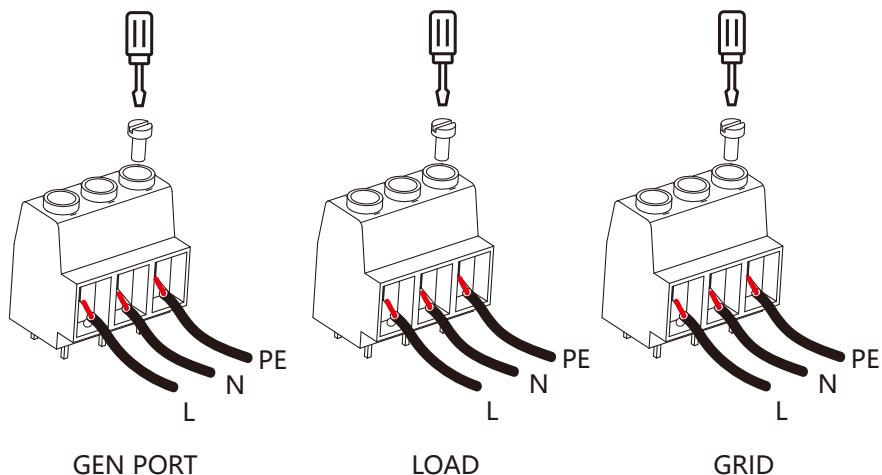
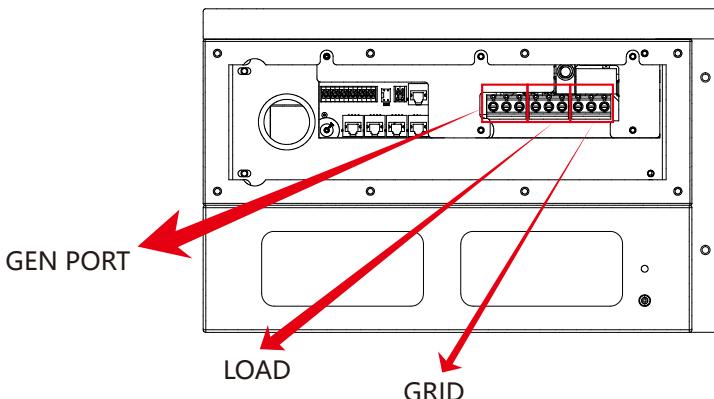
3.3.4 Temperature sensor connection for lead-acid battery

3.4 Grid connection and backup load connection

- Before connecting to the grid, a separate AC breaker must be installed between the inverter and the grid, and also between the backup load and the inverter. This will ensure the inverter can be securely disconnected during maintenance and fully protected from over current. For the 3.6/5/6/7.6/8kW model, the recommended AC breaker for backup load 3.6/5/6kW is 40A, 7/7.6/8kW is 50A. For the 3.6/5/6/7/7.6/8kW model, the recommended AC breaker for grid 3.6/5/6kW is 40A, 7/7.6/8kW is 50A.
- There are three terminal blocks with "Grid" "Load" and "GEN" markings. Please do not misconnect input and output connectors.

All wiring must be performed by a qualified personnel. It is very important for system safety and efficient operation to use appropriate cable for AC input connection. To reduce risk of injury, please use the proper recommended cable as below.


Model	Wire Size	Cable(mm ²)	Torque value(max)	Phase
AI-W5.1-3.6/5P1-EU-B	12AWG	2.5	1.2Nm	L+N
AI-W5.1-6P1-EU-B	10AWG	4	1.2Nm	L+N
AI-W5.1-7/7.6/8P1-EU-B	8AWG	6	1.2Nm	L+N



Chart 3-3 Recommended Size for AC wires

Please follow below steps to implement AC input/output connection:

- Before making Grid, load and Gen port connection, be sure to turn off AC breaker or disconnector first.
- Remove insulation sleeve 10mm length, unscrew the bolts. For GRID and GEN ports, just insert the wires into the terminals according to polarities indicated on the terminal block. For load port, thread the wires through the magnetic ring firstly, then insert the wires into the terminals according to polarities indicated on the terminal block.

Tighten the terminal screws and make sure the wires are completely and safely connected.

Be sure that AC power source is disconnected before attempting to wire it to the unit.

3. Then, insert AC output wires according to polarities indicated on the terminal block and tighten terminal. Be sure to connect corresponding N wires and PE wires to related terminals as well.
4. Make sure the wires are securely connected.
5. Appliances such as air conditioner are required at least 2-3 minutes to restart because it is required to have enough time to balance refrigerant gas inside of circuit. If a power shortage occurs and recovers in short time, it will cause damage to your connected appliances. To prevent this kind of damage, please check manufacturer of air conditioner if it is equipped with time-delay function before installation. Otherwise, this inverter will trigger overload fault and cut off output to protect your appliance but sometimes it still causes internal damage to the air conditioner

3.5 PV Connection

Before connecting to PV modules, please install a separately DC circuit breaker between inverter and PV modules. It is very important for system safety and efficient operation to use appropriate cable for PV module connection. To reduce risk of injury, please use the proper recommended cable size as below.

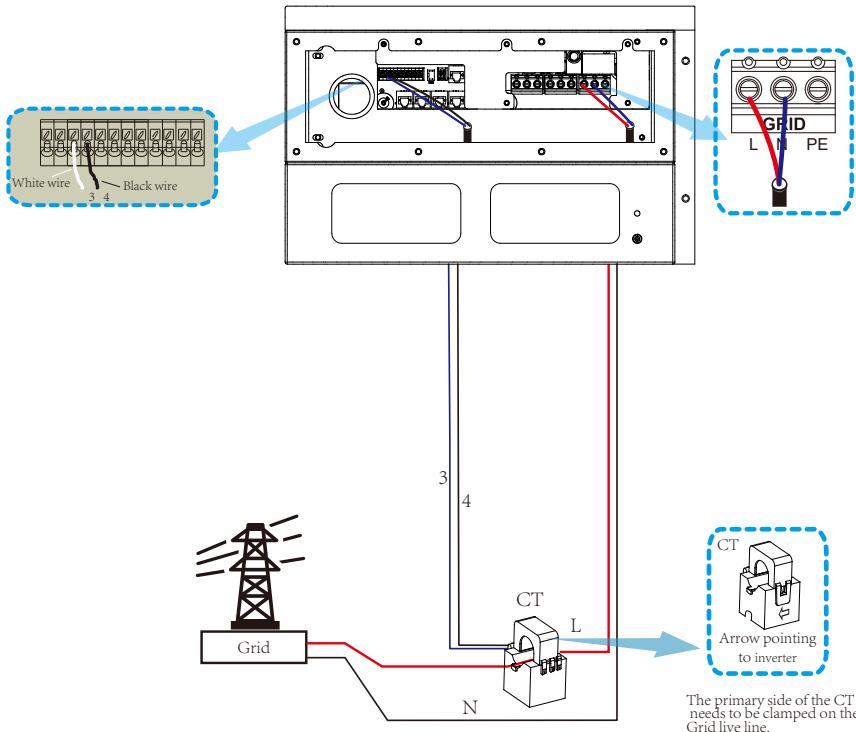
Model	Wire Size	Cable(mm ²)
AI-W5.1-3.6/5/6/7/7.6/8P1-EU-B	12AWG	2.5

Chart 3-4 Cable size

To avoid any malfunction, do not connect any PV modules with possible current leakage to the inverter. For example, grounded PV modules will cause current leakage to the inverter. When using PV modules, please ensure the PV+ & PV- of solar panel is not connected to the system ground bar.

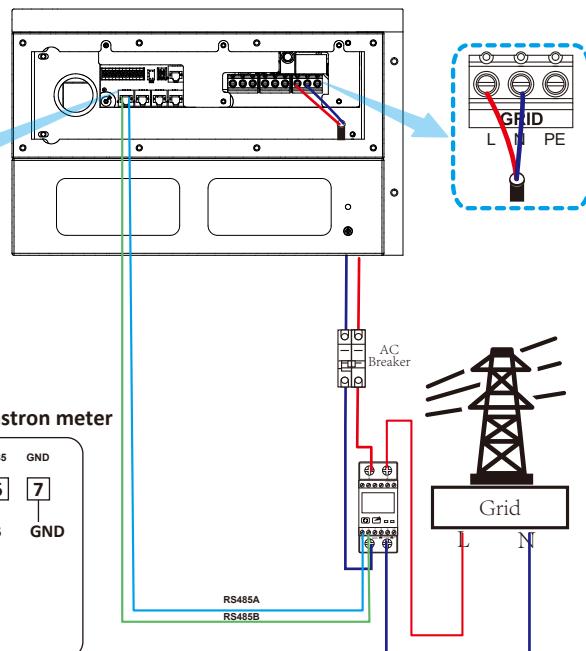
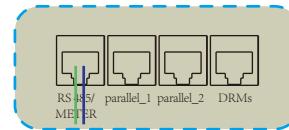
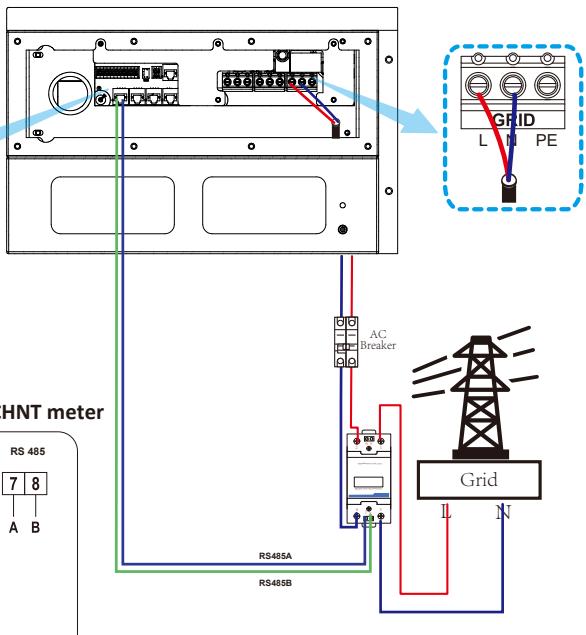
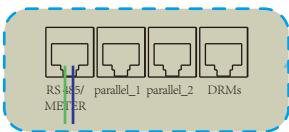
It is requested to use PV junction box with surge protection. Otherwise, it will cause damage on inverter when lightning occurs on PV modules.

3.5.1 PV Module Selection:


When selecting proper PV modules, please be sure to consider below parameters:

- 1) Open circuit Voltage (Voc) of PV modules not exceeds max. PV array open circuit voltage of inverter.
- 2) Open circuit Voltage (Voc) of PV modules should be higher than min. start voltage.
- 3) The PV modules used to connected to this inverter shall be Class A rating certified according to IEC 61730.

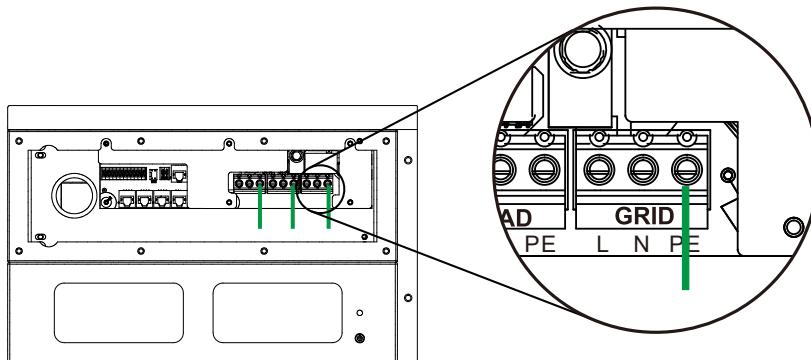
Inverter Model	AI-W5.1-3.6P1-EU-B	AI-W5.1-5P1-EU-B	AI-W5.1-6P1-EU-B	AI-W5.1-7P1-EU-B	AI-W5.1-7.6P1-EU-B	AI-W5.1-8P1-EU-B
PV Input Voltage	370V (125V-500V)					
PV Array MPPT Voltage Range	150V-425V					
No. of MPP Trackers	2					
No. of Strings per MPP Tracker	1+1	1+1	1+1	2+2	2+2	2+2





Chart 3-5

3.6 CT Connection

***Note: when the reading of the load power on the LCD is not correct, please reverse the CT arrow.**

3.6.1 Meter Connection



Note:

In final installation, breaker certified according to IEC 60947-1 and IEC 60947-2 shall be installed with the equipment.

3.7 Earth Connection(mandatory)

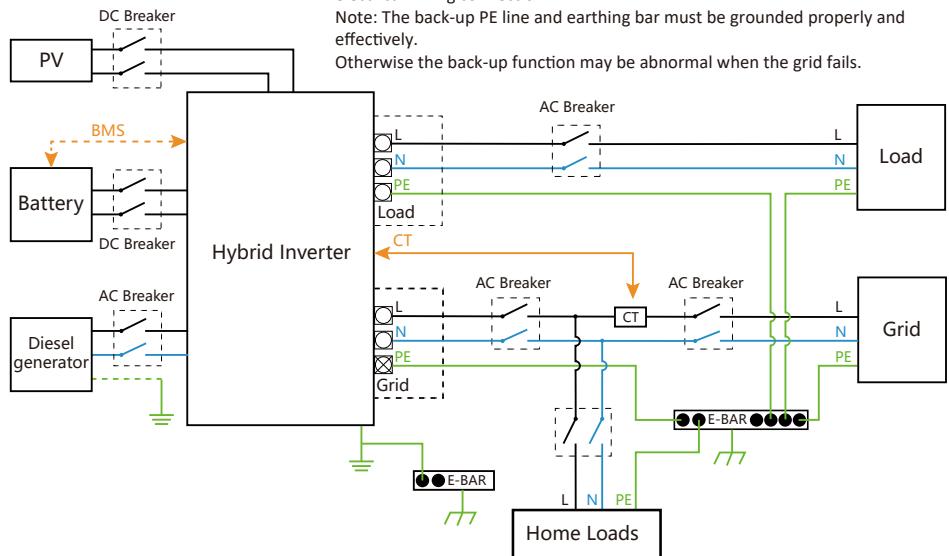
Ground cable shall be connected to ground plate on grid side this prevents electric shock if the original protective conductor fails.

Earth connection(Copper wires)

Model	Wire Size	Cable(mm^2)	Torque value(max)
AI-W5.1-3.6/5P1-EU-B	12AWG	2.5	1.2Nm
AI-W5.1-6P1-EU-B	10AWG	4	1.2Nm
AI-W5.1-7/7.6/8P1-EU-B	8AWG	6	1.2Nm

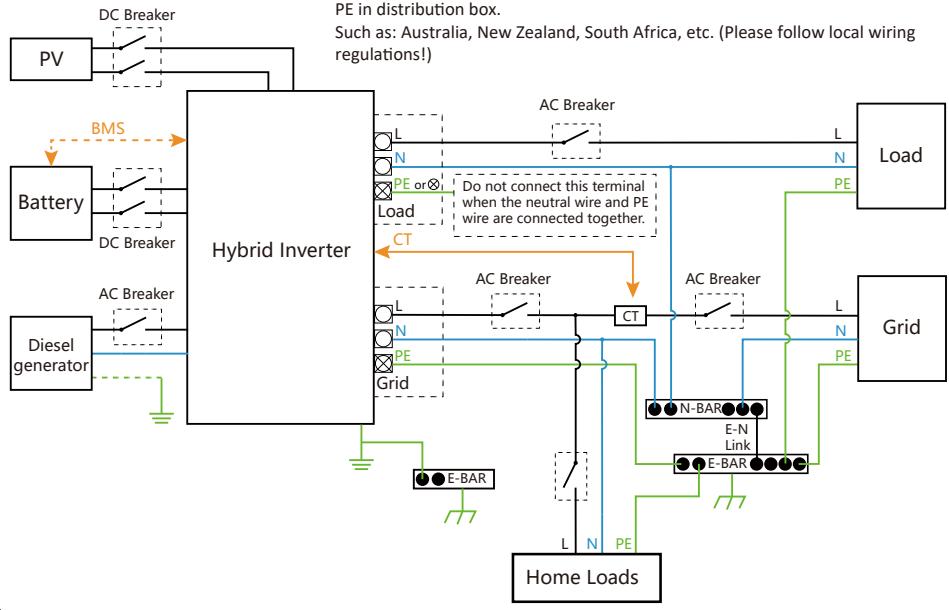
The conductor should be made of the same metal as the phase conductors.

3.8 WIFI Connection

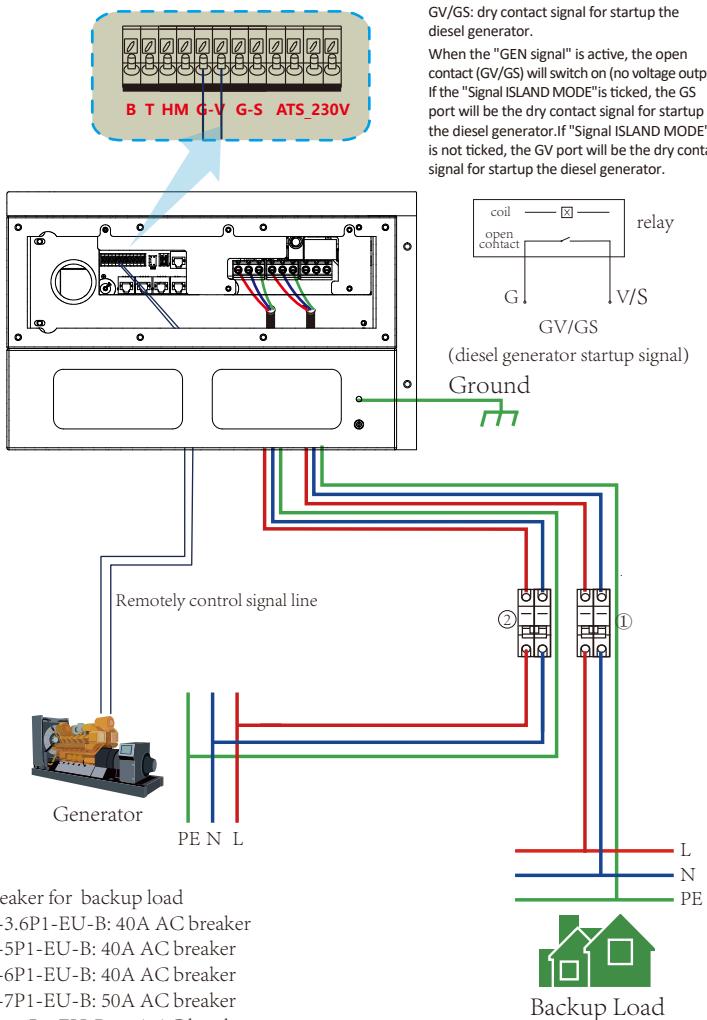

For the configuration of Wi-Fi Plug, please refer to illustrations of the Wi-Fi Plug. The Wi-Fi Plug is not a standard configuration, it's optional.

3.9 Wiring System for Inverter

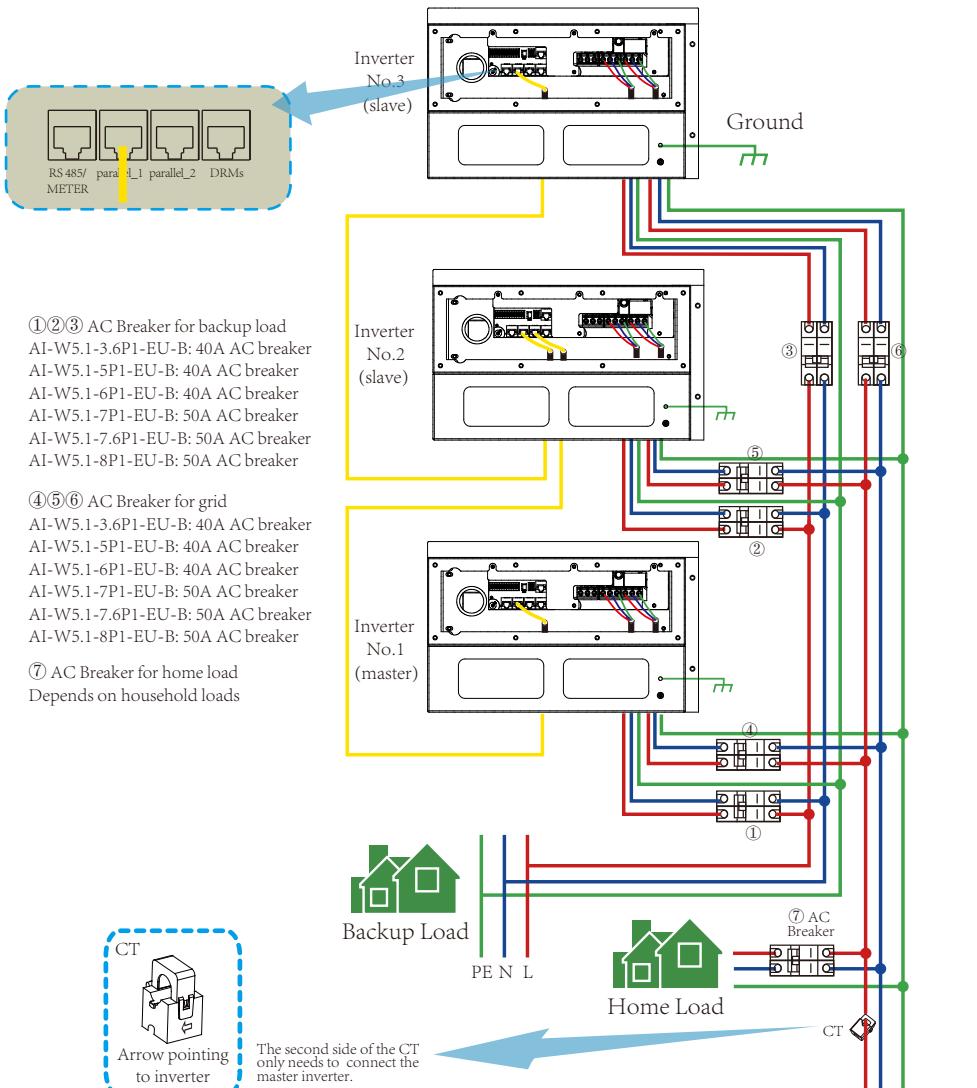
This diagram is an example for grid systems without special requirements on electrical wiring connection.


Note: The back-up PE line and earthing bar must be grounded properly and effectively.

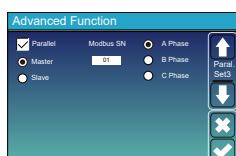
Otherwise the back-up function may be abnormal when the grid fails.


This diagram is an example for application that Neutral connects together with PE in distribution box.

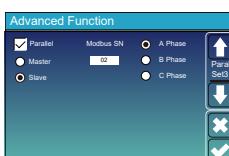
Such as: Australia, New Zealand, South Africa, etc. (Please follow local wiring regulations!)

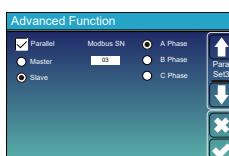

3.10 Typical application diagram of diesel generator

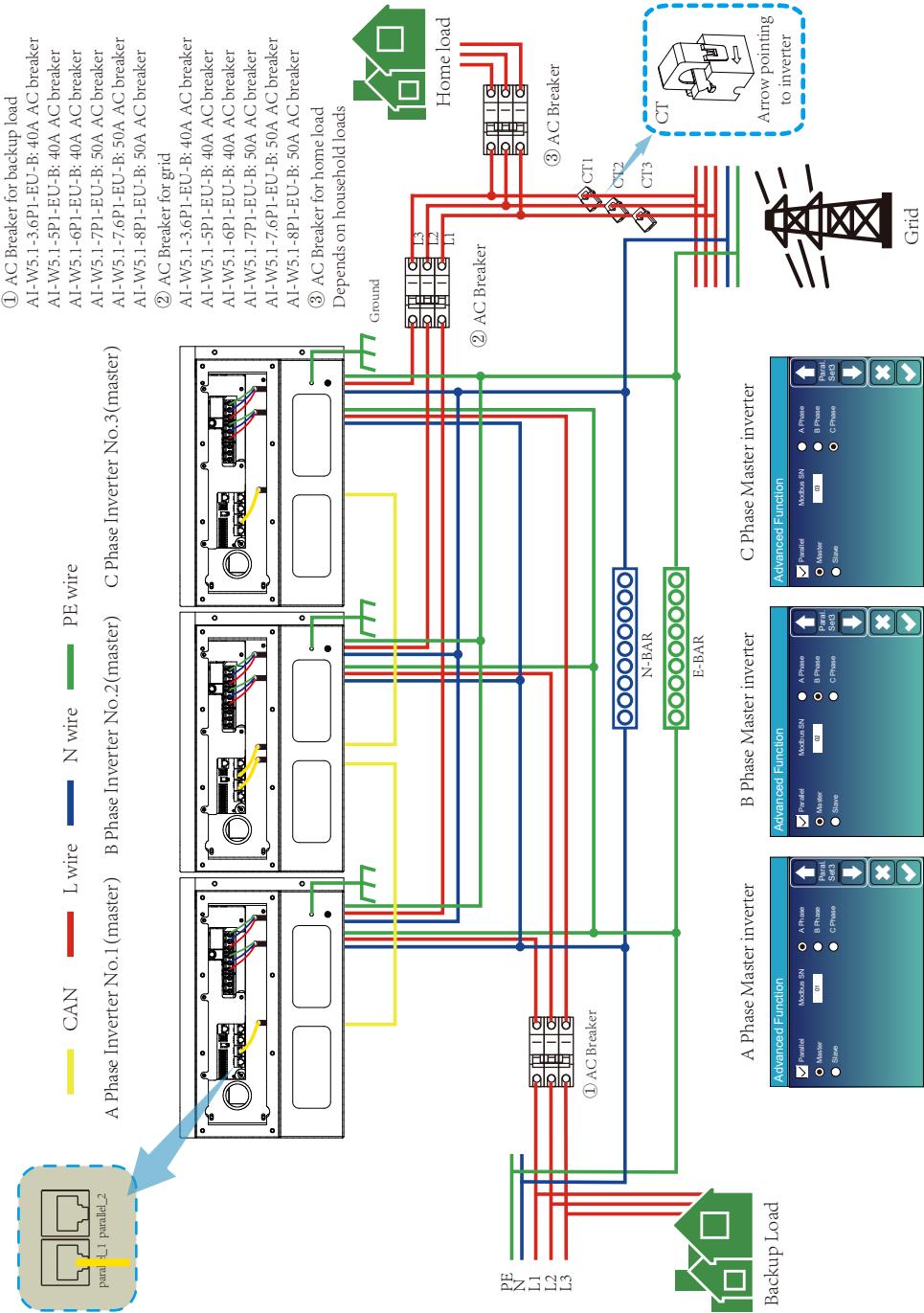
— CAN — L wire — N wire — PE wire



3.11 Single phase parallel connection diagram


Yellow line: CAN Red line: L wire Blue line: N wire Green line: PE wire


Master inverter


Slave Inverter

Slave Inverter

3.12 Three phase Parallel Inverter

4. OPERATION

4.1 Power ON/OFF

Once the unit has been properly installed and the batteries are connected well, simply press On/Off button(located on the left side of the case) to turn on the unit. When system without battery connected, but connect with either PV or grid, and ON/OFF button is switched off, LCD will still light up(Display will show OFF), In this condition, when switch on ON/OFF button and select NO battery, system can still work.

4.2 Operation and Display Panel

The operation and display panel, shown in below chart, is on the front panel of the inverter. It includes four indicators, four function keys and a LCD display, indicating the operating status and input/output power information.

<i>LED Indicator</i>		<i>Messages</i>
DC	Green led solid light	PV Connection normal
AC	Green led solid light	Grid Connection normal
Normal	Green led solid light	Inverter operating normal
Alarm	Red led solid light	Malfunction or warning

Chart 4-1 LED indicators

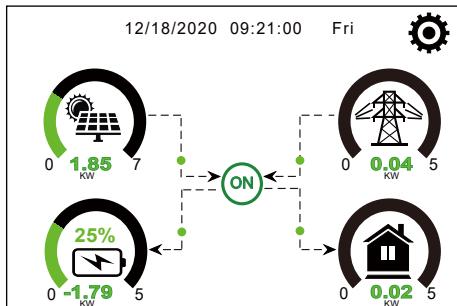

<i>Function Key</i>	<i>Description</i>
Esc	To exit setting mode
Up	To go to previous selection
Down	To go to next selection
Enter	To confirm the selection

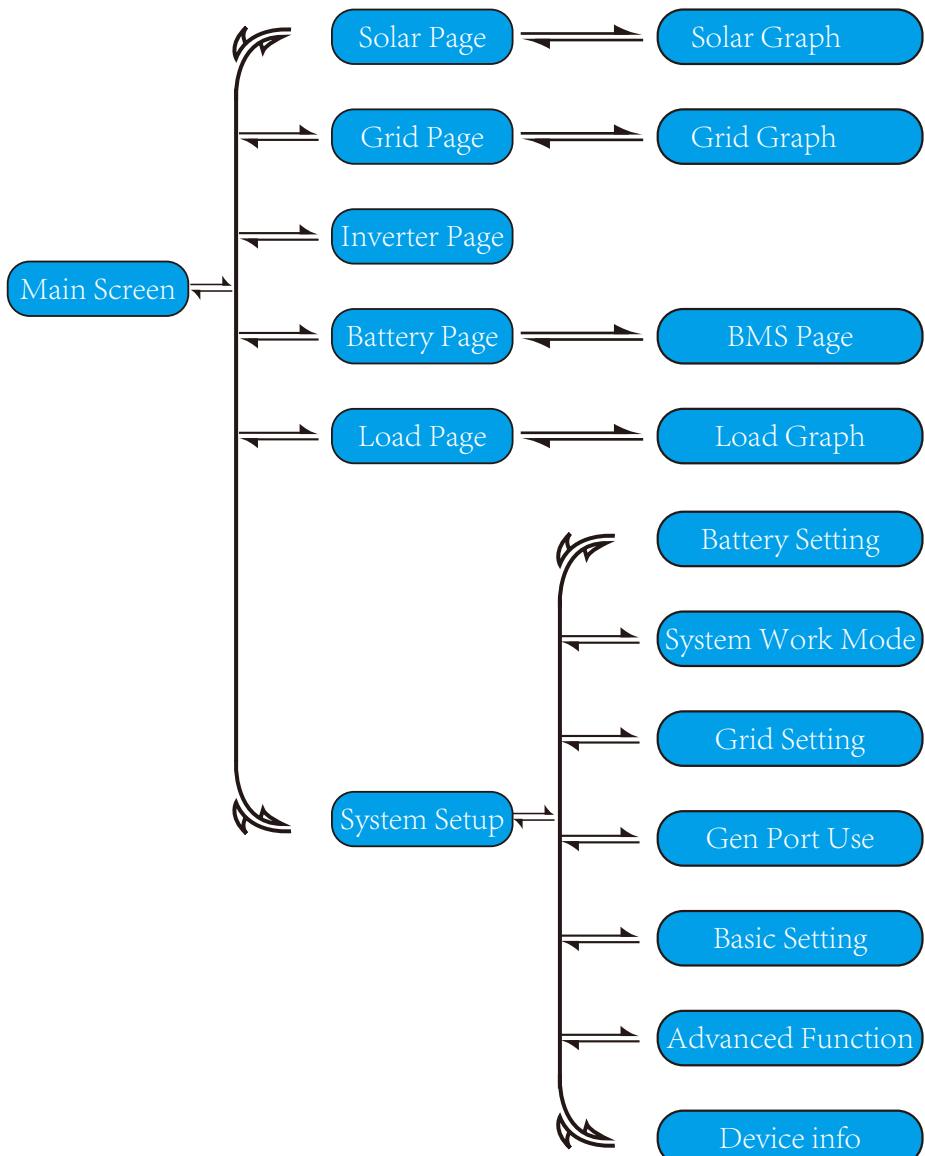
Chart 4-2 Function Buttons

5. LCD Display Icons

5.1 Main Screen

The LCD is touchscreen, below screen shows the overall information of the inverter.

1. The icon in the center of the home screen indicates that the system is Normal operation. If it turns into "comm./FXX", it means the inverter has communication errors or other errors, the error message will display under this icon(FXX errors, detail error info can be viewed in the System Alarms menu).


2. At the top of the screen is the time.

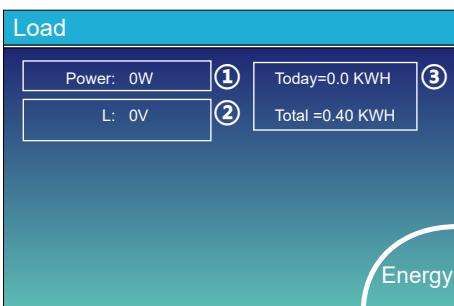
3. System Setup Icon, Press this set button, you can enter into the system setup screen which including Basic Setup, Battery Setup, Grid Setup, System Work Mode, Generator port use, Advanced function and Li-Batt info.

4. The main screen showing the info including Solar, Grid, Load and Battery. Its also displaying the energy flow direction by arrow. When the power is approximate to high level, the color on the panels will changing from green to red so system info showing vividly on the main screen.

- PV power and Load power always keep positive.
- Grid power negative means sell to grid, positive means get from grid.
- Battery power negative means charge, positive means discharge.

5.1.1 LCD operation flow chart

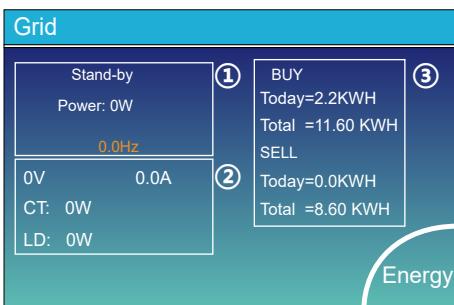
5.2 Solar Power Curve


This is Solar Panel detail page.

- ① Solar Panel Generation.
- ② **Grid Tie Power:** when there's a string inverter AC couple at the grid or load side of hybrid inverter, and there's a meter installed for the string inverter, then the hybrid inverter LCD will show the string inverter output power on its PV icon. Please make sure the meter can communicate with the hybrid inverter successfully.
- ③ Voltage, Current, Power for each MPPT.
- ④ Solar Panel energy for Day and Total. Press the "Energy" button will enter into the power curve page.

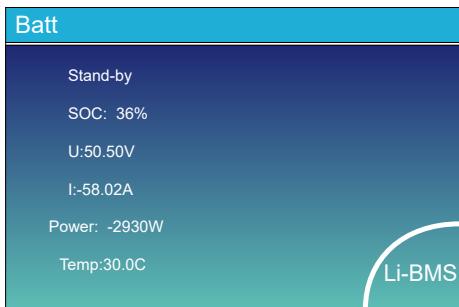
This is Inverter detail page.

- ① Inverter Generation.
- ② 0.0Hz: frequency after DC/AC. Voltage, Current, Power for each Phase.
- ③ *DC-T: mean DC-DC temperature, AC-T: mean Heat-sink temperature.
- *Note: this part info is not available for some LCD FW.


This is Load detail page.

- ① Load Power.
- ② Voltage, Power for each Phase.
- ③ Load consumption for Day and Total.

When you check "Selling First" or "Zero export to Load" on system work mode page, the information on this page is about backup load which connect on Load port of hybrid inverter.

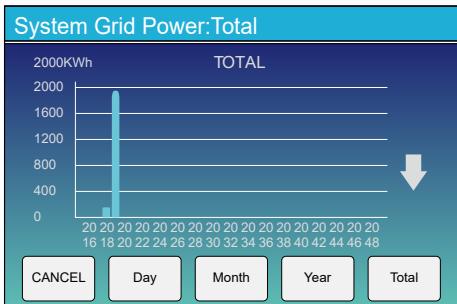
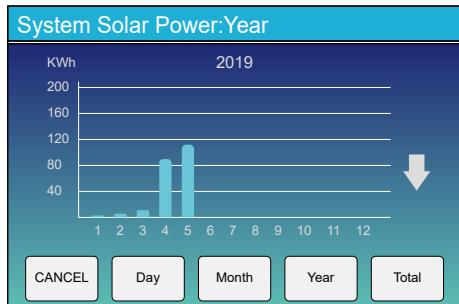
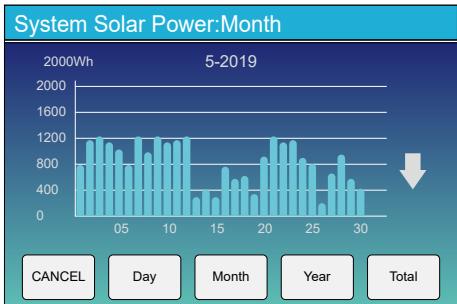
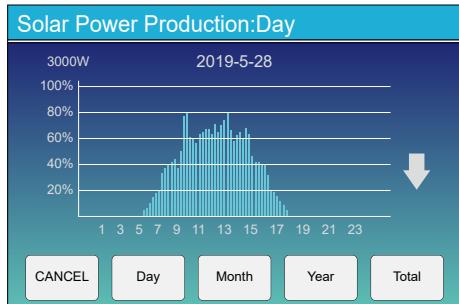

When you check "Zero export to CT" on system work mode page, the information on this page is including backup load and home load.

Press the "Energy" button will enter into the power curve page.

This is Grid detail page.

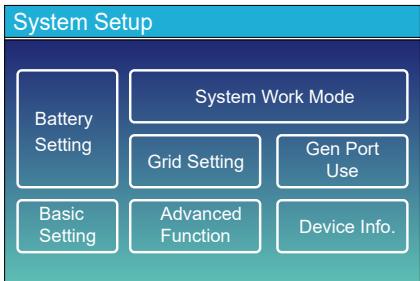
- ① Status, Power, Frequency.
- ② L: Voltage for each Phase
- CT: Power detected by the external current sensors
- LD: Power detected using internal sensors on AC grid in/out breaker
- ③ BUY: Energy from Grid to Inverter, SELL: Energy from Inverter to grid.
- Press the "Energy" button will enter into the power curve page.

This is Battery detail page.

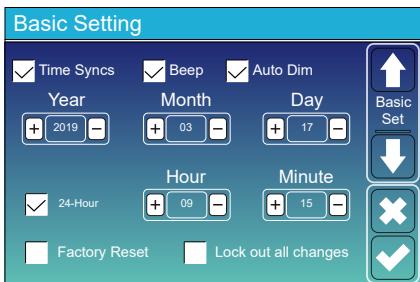




if you use Lithium Battery, you can enter BMS page.

Li-BMS	
Mean Voltage:50.34V	Charging Voltage :53.2V
Total Current:55.00A	Discharging Voltage :47.0V
Mean Temp :23.5C	Charging current :50A
Total SOC :38%	Discharging current :25A
Dump Energy:57Ah	
Request Force Charge	

Request Force Charge: It indicates the BMS requests hybrid inverter to charge the battery actively.


Li-BMS						
Volt	Cur	Temp	SOC	Energy	Charge	Fault
5.00V	0.00A	30.00C	50.00%	26.00Ah	0.0V	0x00
50.33V	19.70A	31.00C	52.00%	25.55Ah	53.2V	0x00
50.30V	16.90A	30.2C	12.00%	6.00Ah	53.2V	25.00A
5.00V	0.00A	0.00C	0.00%	0.00Ah	0.0V	0x00
5.00V	0.00A	0.00C	0.00%	0.00Ah	0.0V	0x00
6.00V	0.00A	0.00C	0.00%	0.00Ah	0.0V	0x00
7.00V	0.00A	0.00C	0.00%	0.00Ah	0.0V	0x00
8.00V	0.00A	0.00C	0.00%	0.00Ah	0.0V	0x00
9.00V	0.00A	0.00C	0.00%	0.00Ah	0.0V	0x00
10.00V	0.00A	0.00C	0.00%	0.00Ah	0.0V	0x00
11.00V	0.00A	0.00C	0.00%	0.00Ah	0.0V	0x00
12.00V	0.00A	0.00C	0.00%	0.00Ah	0.0V	0x00
13.00V	0.00A	0.00C	0.00%	0.00Ah	0.0V	0x00
14.00V	0.00A	0.00C	0.00%	0.00Ah	0.0V	0x00
15.00V	0.00A	0.00C	0.00%	0.00Ah	0.0V	0x00

5.3 Curve Page-Solar & Load & Grid


Solar power curve for daily, monthly, yearly and total can be roughly checked on the LCD, for more accuracy power generation, pls check on the monitoring system. Click the up and down arrow to check power curve of different period.

5.4 System Setup Menu

This is System Setup page.

5.5 Basic Setup Menu

Factory Reset: Reset all parameters of the inverter.
Lock out all changes: Enable this menu for setting parameters that require locking and cannot be set up. Before performing a successful factory reset and locking the systems, to keep all changes you need to type in a password to enable the setting. The password for factory settings is 9999 and for lock out is 7777.

Factory Reset Password: 9999

Lock out all changes Password: 7777

System selfchek: After ticking this item, it needs input the password. The default password is 1234

5.6 Battery Setup Menu

Battery Setting	
Batt Mode	
<input checked="" type="radio"/> Lithium	Batt Capacity 400Ah
<input type="radio"/> Use Batt V	Max A Charge 40A
<input type="radio"/> Use Batt %	Max A Discharge 40A
<input type="radio"/> No Batt	
<input type="checkbox"/> Activate Battery	<input type="checkbox"/> Disable Float Charge

Battery capacity: it tells Deye hybrid inverter to know your battery bank size.

Use Batt V: Use Battery Voltage for all the settings (V).

Use Batt %: Use Battery SOC for all the settings (%).

Max. A charge/discharge: Max battery charge/discharge current(0-90A for 3.6kW model, 0-120A for 5kW model, 0-135A for 6kW model, 0-190A for 7/7.6/8kW model).

For AGM and Flooded, we recommend Ah battery size x 20% = Charge/Discharge amps.

. For Lithium, we recommend Ah battery size x 50% = Charge/Discharge amps.

. For Gel, follow manufacturer' s instructions.

No Batt: tick this item if no battery is connected to the system.

Active battery: This feature will help recover a battery that is over discharged by slowly charging from the solar array or grid.

Disable Float Charge: For the lithium battery with BMS communication, the inverter will keep the charging voltage at the current voltage when the BMS charging current requested is 0. It is used to help prevent battery from being overcharged.

Battery Setting	
Start 30% A 40A <input type="checkbox"/> Gen Charge <input type="checkbox"/> Gen Signal <input type="checkbox"/> Gen Force	30% 40A <input type="checkbox"/> Grid Charge <input type="checkbox"/> Grid Signal
<input type="checkbox"/> Batt Set1 <input type="checkbox"/> Batt Set2 <input checked="" type="checkbox"/> Batt Set3 <input type="checkbox"/> Batt Set4	

This is Battery Setup page. (1) (3)

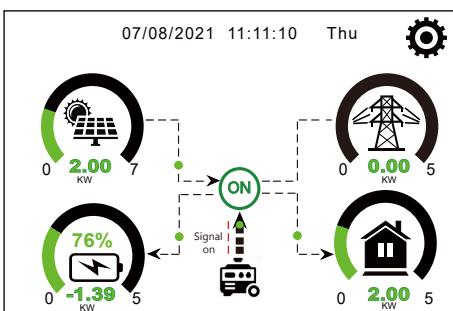
Start =30%: Percent S.O.C at 30% system will AutoStart a connected generator to charge the battery bank.

A = 40A: Charge rate of 40A from the attached generator in Amps.

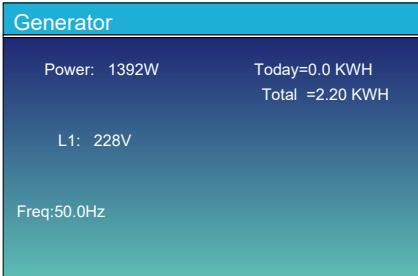
Gen Charge: uses the gen input of the system to charge battery bank from an attached generator.

Gen Signal: Normally open relay that closes when the Gen Start signal state is active.

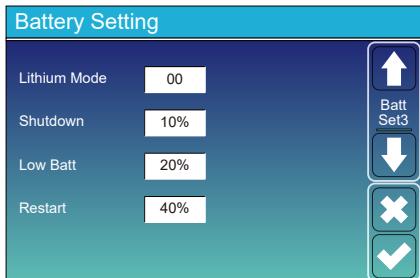
Gen Force: When the generator is connected, it is forced to start the generator without meeting other conditions.


This is Grid Charge, you need select. (2)

Start =30%: No use, Just for customization.

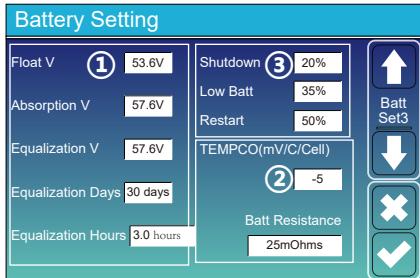

A = 40A: It indicates the Current that the Grid charges the Battery.

Grid Charge: It indicates that the grid charges the battery.


Grid Signal: Disable.

This page tells the PV and diesel generator power the load and battery.

This page tells generator output voltage, frequency, power. And, how much energy is used from generator.



Lithium Mode: This is BMS protocol. Please reference the document (Approved Battery).

Shutdown 10%: It indicates the inverter will shutdown if the SOC below this value.

Low Batt 20%: It indicates the inverter will alarm if the SOC below this value.

Restart 40%: Battery voltage at 40% AC output will resume.

There are 3 stages of charging the Battery .

①

This is for professional installers, you can keep it if you do not know.

②

Shutdown 20%: The inverter will shutdown if the SOC below this value.

③

Low Batt 35%: The inverter will alarm if the SOC below this value.

Restart 50%: Battery SOC at 50% AC output will resume.

Recommended battery settings

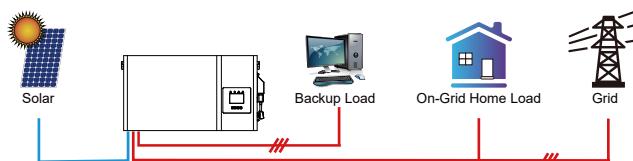
Battery Type	Absorption Stage	Float Stage	Torque value (every 30 days 3hr)
AGM (or PCC)	14.2V (57.6V)	13.4V (53.6V)	14.2V (57.6V)
Gel	14.1V (56.4V)	13.5V (54.0V)	
Wet	14.7V (59.0V)	13.7V (55.0V)	14.7V (59.0V)
Lithium	Follow its BMS voltage parameters		

5.7 System Work Mode Setup Menu

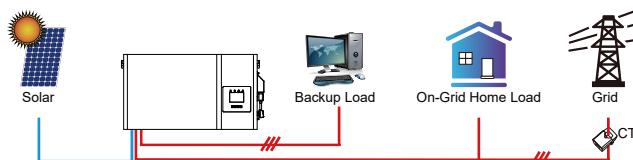
System Work Mode

Selling First Max Solar Power
 Zero Export To Load Solar Sell
 Zero Export To CT Solar Sell
 Max Sell Power Zero-export Power
 Energy pattern BattFirst LoadFirst
 Grid Peak Shaving Power

Work Mode


Selling First: This Mode allows hybrid inverter to sell back any excess power produced by the solar panels to the grid. If time of use is active, the battery energy also can be sold into grid.

The PV energy will be used to power the load and charge the battery and then excess energy will flow to grid.


Power source priority for the load is as follows:

1. Solar Panels.
2. Grid.
3. Batteries (until programmable % discharge is reached).

Zero Export To Load: Hybrid inverter will only provide power to the backup load connected. The hybrid inverter will neither provide power to the home load nor sell power to grid. The built-in CT will detect power flowing back to the grid and will reduce the power of the inverter only to supply the local load and charge the battery.

Zero Export To CT: Hybrid inverter will not only provide power to the backup load connected but also give power to the home load connected. If PV power and battery power is insufficient, it will take grid energy as supplement. The hybrid inverter will not sell power to grid. In this mode, a CT is needed. The installation method of the CT please refer to chapter 3.6 CT Connection. The external CT will detect power flowing back to the grid and will reduce the power of the inverter only to supply the local load, charge battery and home load.

Solar Sell: “Solar sell” is for Zero export to load or Zero export to CT: when this item is active, the surplus energy can be sold back to grid. When it is active, PV Power source priority usage is as follows: load consumption and charge battery and feed into grid.

Max. sell power: Allowed the maximum output power to flow to grid.

Zero-export Power: for zero-export mode, it tells the grid output power. Recommend to set it as 20-100W to ensure the hybrid inverter won't feed power to grid.

Energy Pattern: PV Power source priority.

Batt First: PV power is firstly used to charge the battery and then used to power the load. If PV power is insufficient, grid will make supplement for battery and load simultaneously.

Load First: PV power is firstly used to power the load and then used to charge the battery. If PV power is insufficient, grid will make supplement for battery and load simultaneously.

Max Solar Power: allowed the maximum DC input power.

Grid Peak-shaving: when it is active, grid output power will be limited within the set value. If the load power exceeds the allowed value, it will take PV energy and battery as supplement. If still can't meet the load requirement, grid power will increase to meet the load needs.

System Work Mode

Grid Charge	Gen	Time Of Use				
		Time	Power	Batt		
		01:00	5:00	5000	49.0V	
		05:00	9:00	5000	50.2V	
✓		09:00	13:00	5000	50.9V	
✓		13:00	17:00	5000	51.4V	
✓		17:00	21:00	5000	47.1V	
✓		21:00	01:00	5000	49.0V	

Time of use: it is used to program when to use grid or generator to charge the battery, and when to discharge the battery to power the load. Only tick “Time Of Use” then the follow items (Grid, charge, time, power etc.) will take effect.

Note: when in selling first mode and click time of use, the battery power can be sold into grid.

Grid charge: utilize grid to charge the battery in a time period.

Gen charge: utilize diesel generator to charge the battery in a time period.

Time: real time, range of 01:00-24:00.

Power: Max. discharge power of battery allowed.

Batt(V or SOC %): battery SOC % or voltage at when the action is to happen.

For example:

During 01:00-05:00, when battery SOC is lower than 80%, it will use grid to charge the battery until battery SOC reaches 80%.

During 05:00-08:00 and 08:00-10:00, when battery SOC is higher than 40%, hybrid inverter will discharge the battery until the SOC reaches 40%.

During 10:00-15:00, when battery SOC is higher than 80%, hybrid inverter will discharge the battery until the SOC reaches 80%.

During 15:00-18:00, when battery SOC is higher than 40%, hybrid inverter will discharge the battery until the SOC reaches 40%.

During 18:00-01:00, when battery SOC is higher than 35%, hybrid inverter will discharge the battery until the SOC reaches 35%.

System Work Mode

Grid Charge	Gen	Time Of Use				
		Time	Power	Batt		
✓		01:00	5:00	5000	80%	
		05:00	8:00	5000	40%	
		08:00	10:00	5000	40%	
		10:00	15:00	5000	80%	
		15:00	18:00	5000	40%	
		18:00	01:00	5000	35%	

It allows users to choose which day to execute the setting of “Time of Use”.

For example, the inverter will execute the time of use page on Mon/Tue/Wed/Thu/Fri/Sat only.

System Work Mode

Mon	Tue	Wed	Thu	Fri	Sat	Sun	
✓	✓	✓	✓	✓	✓		

5.8 Grid Setup Menu

Grid Setting

<input type="checkbox"/> Unlock Grid Setting	0/16	
Grid Mode	General Standard	0/16
Grid Frequency	<input checked="" type="radio"/> 50HZ <input type="radio"/> 60HZ	INV Output Voltage
		240V 220V 230V 200V
Grid Type	<input checked="" type="radio"/> Single Phase <input type="radio"/> 120/240V Split Phase <input type="radio"/> 120/208V 3 Phase	Grid Set1

Unlock Grid Setting: before changing the grid parameters, please enable this with password of 7777. Then it is allowed to change the grid parameters.

Grid Mode: General Standard、UL1741 & IEEE1547、CPUC RULE21、SRD-UL-1741、CEI 0-21、EN50549_CZ、Australia_A、Australia_B、Australia_C、NewZealand、VDE4105、OVE_Directive_R25、EN50549_CZ_PPDS_L16A、NRS097、G98/G99、G98/G99_NI、ESB Networks(Ireland). Please follow the local grid code and then choose the corresponding grid standard.

Grid Setting/Connect

Normal connect	Normal Ramp rate	60s	
Low frequency	48.00Hz	High frequency	51.50Hz
Low voltage	185.0V	High voltage	265.0V
Reconnect after trip	Reconnect Ramp rate	60s	
Low frequency	48.20Hz	High frequency	51.30Hz
Low voltage	187.0V	High voltage	263.0V
Reconnection Time	60s	PF	1.000

Normal connect: The allowed grid voltage/frequency range when the inverter first time connect to the grid.
Normal Ramp rate: It is the startup power ramp.

Reconnect after trip: The allowed grid voltage /frequency range for the inverter connects the grid after the inverter trip from the grid.
Reconnect Ramp rate: It is the reconnection power ramp.

Reconnection time: The waiting time period for the inverter connects the grid again.
PF: Power factor which is used to adjust inverter reactive power.

Grid Setting/IP Protection

Over voltage U>(10 min. running mean)		260.0V
HV3	265.0V	
HV2	265.0V	0.10s
HV1	265.0V	0.10s
LV1	185.0V	0.10s
LV2	185.0V	0.10s
LV3	185.0V	
HF3		51.50Hz
HF2	51.50Hz	0.10s
HF1	51.50Hz	0.10s
LF1	48.00Hz	0.10s
LF2	48.00Hz	0.10s
LF3	48.00Hz	

① HV1: Level 1 overvoltage protection point;
 ② HV2: Level 2 overvoltage protection point; ② 0.10s—Trip time.
 HV3: Level 3 overvoltage protection point.

LV1: Level 1 undervoltage protection point;
 LV2: Level 2 undervoltage protection point;
 LV3: Level 3 undervoltage protection point.

HF1: Level 1 over frequency protection point;
 HF2: Level 2 over frequency protection point;
 HF3: Level 3 over frequency protection point.

LF1: Level 1 under frequency protection point;
 LF2: Level 2 under frequency protection point;
 LF3: Level 3 under frequency protection point.

Grid Setting/F(W)

<input type="checkbox"/> F(W)			
Over frequency	Droop f	40%PE/Hz	
Start freq f	50.20Hz	Stop freq f	50.20Hz
Start delay f	0.00s	Stop delay f	0.00s
Under frequency	Droop f	40%PE/Hz	
Start freq f	49.80Hz	Stop freq f	49.80Hz
Start delay f	0.00s	Stop delay f	0.00s

FW: this series inverter is able to adjust inverter output power according to grid frequency.

Droop f: percentage of nominal power per Hz
 For example, “Start freq f>50.2Hz, Stop freq f<50.2, Droop f=40%PE/Hz” when the grid frequency reaches 50.2Hz, the inverter will decrease its active power at Droop f of 40%. And then when grid system frequency is less than 50.2Hz, the inverter will stop decreasing output power.

For the detailed setup values, please follow the local grid code.

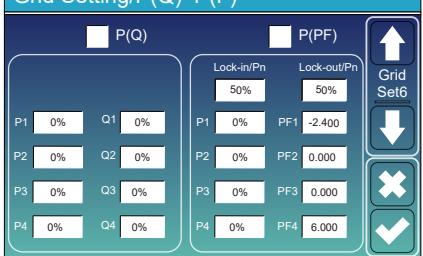
Grid Setting/V(W) V(Q)

V(W): It is used to adjust the inverter active power according to the set grid voltage.

V(Q): It is used to adjust the inverter reactive power according to the set grid voltage.

This function is used to adjust inverter output power (active power and reactive power) when grid voltage changes.

Lock-in/Pn 5%: When the inverter active power is less than 5% rated power, the VQ mode will not take effect.


Lock-out/Pn 20%: If the inverter active power is increasing from 5% to 20% rated power, the VQ mode will take effect again.

For example: V2=110%. P2=20%. When the grid voltage reaches the 110% times of rated grid voltage, inverter output power will reduce its active output power to 20% rated power.

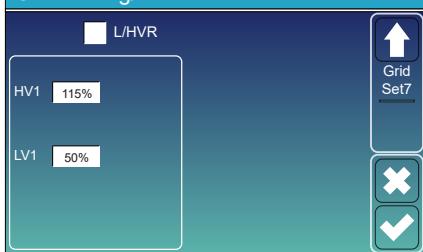
For example: V1=90%, Q1=44%. When the grid voltage reaches the 90% times of rated grid voltage, inverter output power will output 44% reactive output power.

For the detailed setup values, please follow the local grid code.

Grid Setting/P(Q) P(F)

P(Q): It is used to adjust the inverter reactive power according to the set active power.

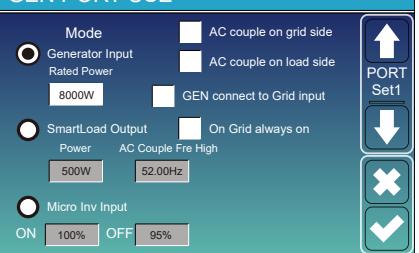
P(PF): It is used to adjust the inverter PF according to the set active power.


For the detailed setup values, please follow the local grid code.

Lock-in/Pn 50%: When the inverter output active power is less than 50% rated power, it won't enter the P(PF) mode.

Lock-out/Pn 50%: When the inverter output active power is higher than 50% rated power, it will enter the P(PF) mode.

Note : only when the grid voltage is equal to or higher than 1.05times of rated grid voltage, then the P(PF) mode will take effect.


Grid Setting/LVRT

Reserved: This function is reserved. It is not recommended.

5.9 Generator Port Use Setup Menu

GEN PORT USE

Generator input rated power: allowed Max. power from diesel generator.

GEN connect to grid input: connect the diesel generator to the grid input port.

Smart Load Output: This mode utilizes the Gen input connection as an output which only receives power when the battery SOC and PV power is above a user programmable threshold.

e.g. Power=500W, ON: 100%, OFF=95%: When the PV power exceeds 500W, and battery bank SOC reaches 100%, Smart Load Port will switch on automatically and power the load connected. When the battery bank SOC < 95% or PV power < 500w, the Smart Load Port will switch off automatically.

Smart Load OFF Batt

- Battery SOC at which the Smart load will switch off.

Smart Load ON Batt

- Battery SOC at which the Smart load will switch on. Also, the PV input power should exceed the setting value (Power) simultaneously and then the Smart load will switch on.

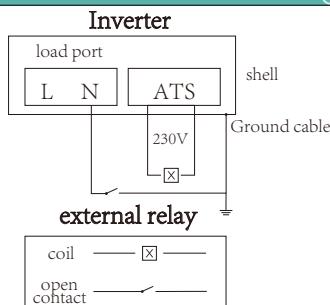
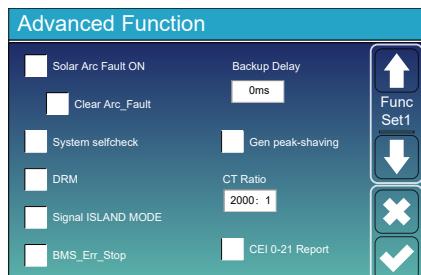
On Grid always on: When click "on Grid always on" the smart load will switch on when the grid is present.

Micro Inv Input: To use the Generator input port as a micro-inverter on grid inverter input (AC coupled), this feature will also work with "Grid-Tied" inverters.

* **Micro Inv Input OFF:** when the battery SOC exceeds setting value, Microinveter or grid-tied inverter will shut down.

* **Micro Inv Input ON:** when the battery SOC is lower than setting value, Microinveter or grid-tied inverter will start to work.

AC Couple Fre High: If choosing "Micro Inv input", as the battery SOC reaches gradually setting value (OFF), During the process, the microinverter output power will decrease linear. When the battery SOC equals to the setting value (OFF), the system frequency will become the setting value (AC couple Fre high) and the Microinverter will stop working. Stop exporting power produced by the microinverter to the grid.



* **Note:** Micro Inv Input OFF and On is valid for some certain FW version only.

* **AC couple on load side:** connecting the output of on-grid inverter at the load port of the hybrid inverter. In this situation, the hybrid inverter will not able to show the load power correctly.

* **AC couple on grid side:** this function is reserved.

* **Note:** Some firmware versions don't have this function.

5.10 Advanced Function Setup Menu

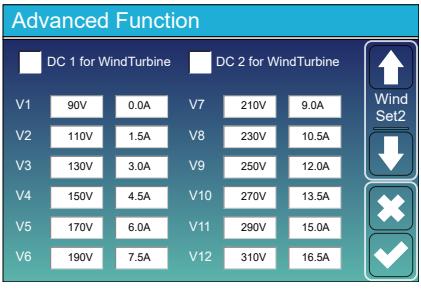
Solar Arc Fault ON: This is only for US.

System selfcheck: Disable. this is only for factory.

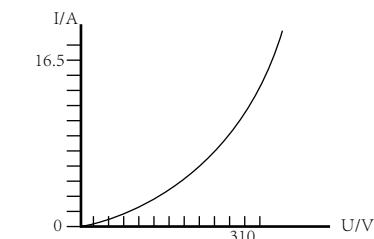
Gen Peak-shaving: Enable When the power of the generator exceeds the rated value of it, the inverter will provide the redundant part to ensure that the generator will not overload.

DRM: For AS4777 standard.

Backup Delay: When the grid cuts off, the inverter will give output power after the setting time.


For example, backup delay: 3ms. the inverter will give output power after 3ms when the grid cuts off.

Note: for some old FW version, the function is not available.

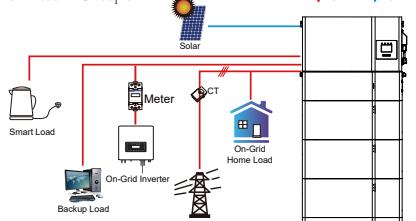

BMS_Err_Stop: When it is active, if the battery BMS failed to communicate with inverter, the inverter will stop working and report fault.

Signal ISLAND MODE: when "signal island mode" is checked and the inverter connects the grid, the ATS port voltage will be 0. When "signal island mode" is checked and the inverter disconnected from the grid, the ATS port voltage will output 230Vac voltage. With this feature and outside NO type relay, it can realize N and PE disconnection or bond.

More details, please refer to left side picture.

This is for Wind Turbine

Advanced Function


<input type="checkbox"/> Parallel	Modbus SN	<input type="radio"/> A Phase
<input type="radio"/> Master	00	<input type="radio"/> B Phase
<input type="radio"/> Slave		<input type="radio"/> C Phase
<input type="checkbox"/> Ex_Meter For CT	Meter Select	<input type="radio"/> Set3
<input type="checkbox"/> A Phase	CHNT-3P	<input type="radio"/> Set3
<input type="checkbox"/> B Phase	CHNT-1P	<input type="radio"/> X
<input type="checkbox"/> C Phase	Easton-3P	<input checked="" type="radio"/> Grid Side INV Meter2
	0/4	

Ex_Meter For CT: when in Three phase system with CHNT Three phase energy meter (DTSU666), click corresponding phase where hybrid inverter is connected. e.g. when the hybrid inverter output connects to A phase, please click A Phase.

Meter Select: select the corresponding meter type according to the meter installed in the system.

Grid Side INV Meter2: when there's a string inverter AC couple at the grid or load side of hybrid inverter and there's a meter installed for the string inverter, then the hybrid inverter LCD will show the string inverter output power on its PV icon. Please make sure the meter can communicate with the hybrid inverter successfully.

On-Load+AC couple

On-Grid+AC couple

Advanced Function

<input type="checkbox"/> ATS	<input type="checkbox"/> ON	<input type="radio"/> Func Set4
<input type="checkbox"/> Low Noise Mode		<input type="radio"/> X
<input type="checkbox"/> Low Power Mode<Low Batt		<input checked="" type="radio"/> ✓

ATS: It is related with ATS port voltage. it is better in "unchecked" position.

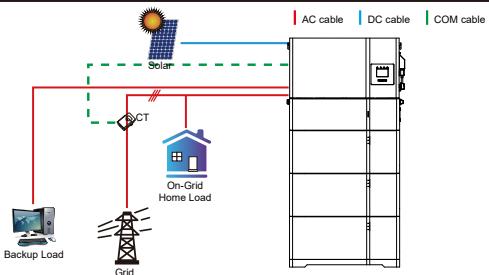
Low Noise Mode: In this mode, inverter will work in "low noise mode".

Low Power Mode<Low Batt: if selected and when battery SOC is less than "Low Bat" value, the self-consumption power of inverter will be from grid and battery simultaneously. If unselected, the self-consumption power of inverter will be mainly from grid.

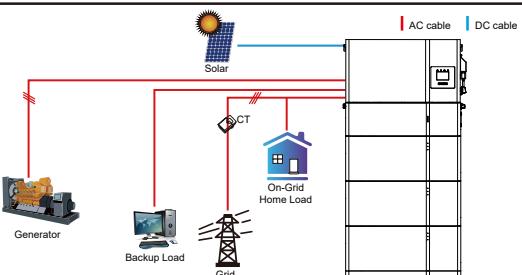
5.11 Device Info Setup Menu

Device Info.

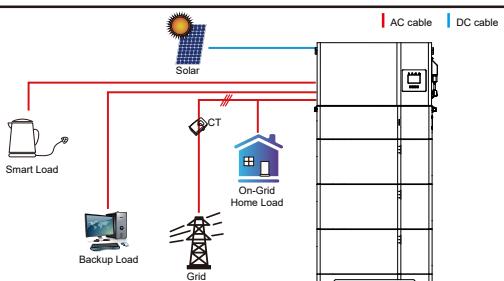
Inverter ID: 1601012001	Flash
HMI: Ver0302	MAIN:Ver 0-5213-0717
Alarms Code	Occurred
F64 Heatsink_HighTemp_Fault	2019-03-11 15:56
F64 Heatsink_HighTemp_Fault	2019-03-08 10:46
F64 Heatsink_HighTemp_Fault	2019-03-08 10:45

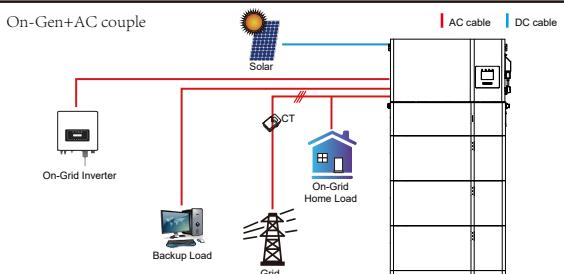

This page show Inverter ID, Inverter version and alarm codes.

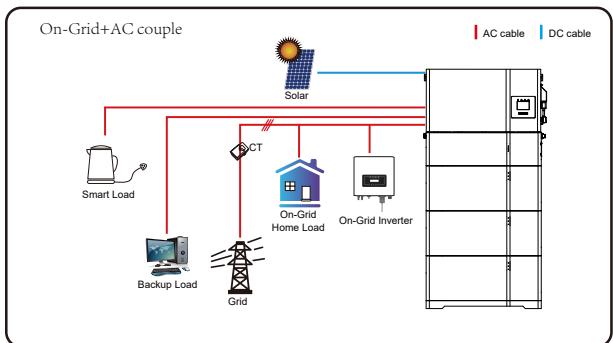
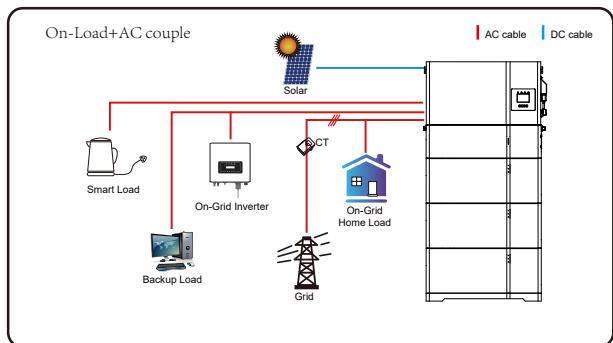
HMI: LCD version


MAIN: Control board FW version

6. Mode


Mode I: Basic


Mode II: With Generator

Mode III: With Smart-Load

Mode IV: AC Couple

The 1st priority power of the system is always the PV power, then 2nd and 3rd priority power will be the battery bank or grid according to the settings. The last power backup will be the Generator if it is available.

7. Fault information and processing

The energy storage inverter is designed according to the grid-connected operation standard and meets the safety requirements and electromagnetic compatibility requirements. Before leaving the factory, the inverter undergoes several rigorous tests to ensure that the inverter can operate reliably.

If any of the fault messages listed in Table 7-1 appear on your inverter and the fault has not been removed after restarting, please contact your local dealer or service center. You need to have the following information ready.

1. Inverter serial number;
2. Distributor or service center of the inverter ;
3. On-grid power generation date;
4. The problem description (including the fault code and indicator status displayed on the LCD) is as detailed as possible.
5. Your contact information.In order to give you a clearer understanding of the inverter's fault information, we will list all possible fault codes and their descriptions when the inverter is not working properly.

Error code	Description	Solutions
F08	GFDI_Relay_Failure	<p>1. When inverter is in Split phase(120/240Vac) or three-phase system (120/208Vac) system, the backup load port N line needs to connect ground;</p> <p>2. If the fault still exists, please contact us for help.</p>
F13	Working mode change	<p>1. When the grid type and frequency changed it will report F13;</p> <p>2. When the battery mode was changed to "No battery" mode, it will report F13;</p> <p>3. For some old FW version, it will report F13 when the system work mode changed;</p> <p>4. Generally, it will disappear automatically when shows F13;</p> <p>5. If still same, and turn off the DC switch and AC switch and wait for one minute and then turn on the DC/AC switch;</p> <p>6. Seek help from us, if can not go back to normal state.</p>
F18	AC over current fault of hardware	<p>AC side over current fault</p> <p>1. Please check whether the backup load power and common load power are within the range;</p> <p>2. Restart and check whether it is in normal;</p> <p>3. Seek help from us, if can not go back to normal state.</p>
F20	DC over current fault of the hardware	<p>DC side over current fault</p> <p>1. Check PV module connect and battery connect;</p> <p>2. When in the off-grid mode, the inverter startup with big power load, it may report F20. Please reduce the load power connected;</p> <p>3. Turn off the DC switch and AC switch and then wait one minute, then turn on the DC/AC switch again;</p> <p>4. Seek help from us, if can not go back to normal state.</p>
F22	Tz_EmergStop_Fault	Please contact your installer for help.
F23	AC leakage current is transient over current	<p>Leakage current fault</p> <p>1. Check PV side cable ground connection.</p> <p>2. Restart the system 2~3 times.</p> <p>3. If the fault still exists, please contact us for help.</p>
F24	DC insulation impedance failure	<p>PV isolation resistance is too low</p> <p>1. Check the connection of PV panels and inverter is firmly and correctly;</p> <p>2. Check whether the PE cable of inverter is connected to ground;</p> <p>3. Seek help from us, if can not go back to normal state.</p>
F26	The DC busbar is unbalanced	<p>1. Please wait for a while and check whether it is normal;</p> <p>2. When the hybrid in split phase mode, and the load of L1 and load of L2 is big different, it will report the F26.</p> <p>3. Restart the system 2~3 times.</p> <p>4. Seek help from us, if can not go back to normal state.</p>
F29	Parallel CANBus fault	<p>1. When in parallel mode, check the parallel communication cable connection and hybrid inverter communication address setting;</p> <p>2. During the parallel system startup period, inverters will report F29, when all inverters are in ON status, it will disappear automatically;</p> <p>3. If the fault still exists, please contact us for help.</p>

Error code	Description	Solutions
F34	AC Overcurrent fault	<ol style="list-style-type: none"> 1. Check the backup load connected, make sure it is in allowed power range; 2. If the fault still exists, please contact us for help.
F35	No AC grid	<p>No Utility</p> <ol style="list-style-type: none"> 1. Please confirm grid is lost or not; 2. Check the grid connection is good or not; 3. Check the switch between inverter and grid is on or not; 4. Seek help from us, if can not go back to normal state.
F41	Parallel system stop	<ol style="list-style-type: none"> 1. Check the hybrid inverter working status. If there's 1 pcs hybrid inverter is in OFF status, the other hybrid inverters may report F41 fault in parallel system. 2. If the fault still exists, please contact us for help.
F42	AC line low voltage	<p>Grid voltage fault</p> <ol style="list-style-type: none"> 1. Check the AC voltage is in the range of standard voltage in specification; 2. Check whether grid AC cables are firmly and correctly connected; 3. Seek help from us, if can not go back to normal state.
F47	AC over frequency	<p>Grid frequency out of range</p> <ol style="list-style-type: none"> 1. Check the frequency is in the range of specification or not; 2. Check whether AC cables are firmly and correctly connected; 3. Seek help from us, if can not go back to normal state.
F48	AC lower frequency	<p>Grid frequency out of range</p> <ol style="list-style-type: none"> 1. Check the frequency is in the range of specification or not; 2. Check whether AC cables are firmly and correctly connected; 3. Seek help from us, if can not go back to normal state.
F56	DC busbar voltage is too low	<p>Battery voltage low</p> <ol style="list-style-type: none"> 1. Check whether battery voltage is too low; 2. If the battery voltage is too low, using PV or grid to charge the battery; 3. Seek help from us, if can not go back to normal state.
F58	BMS communication fault	<ol style="list-style-type: none"> 1. it tells the communication between hybrid inverter and battery BMS disconnected when "BMS_Err-Stop" is active; 2. if don't want to see this happen, you can disable "BMS_Err-Stop" item on the LCD; 3. If the fault still exists, please contact us for help.
F63	ARC fault	<ol style="list-style-type: none"> 1. ARC fault detection is only for US market; 2. Check PV module cable connection and clear the fault; 3. Seek help from us, if can not go back to normal state.
F64	Heat sink high temperature failure	<p>Heat sink temperature is too high</p> <ol style="list-style-type: none"> 1. Check whether the work environment temperature is too high; 2. Turn off the inverter for 10mins and restart; 3. Seek help from us, if can not go back to normal state.

Chart 7-1 Fault information

Under the guidance of our company, customers return our products so that our company can provide service of maintenance or replacement of products of the same value. Customers need to pay the necessary freight and other related costs. Any replacement or repair of the product will cover the remaining warranty period of the product. If any part of the product or product is replaced by the company itself during the warranty period, all rights and interests of the replacement product or component belong to the company.

Factory warranty does not include damage due to the following reasons:

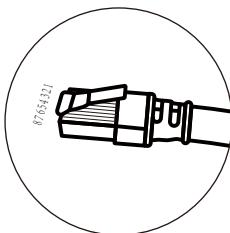
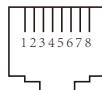
- Damage during transportation of equipment;
- Damage caused by incorrect installation or commissioning;
- Damage caused by failure to comply with operation instructions, installation instructions or maintenance instructions;
- Damage caused by attempts to modify, alter or repair products;
- Damage caused by incorrect use or operation;
- Damage caused by insufficient ventilation of equipment;
- Damage caused by failure to comply with applicable safety standards or regulations;
- Damage caused by natural disasters or force majeure (e.g. floods, lightning, overvoltage, storms, fires, etc.)

In addition, normal wear or any other failure will not affect the basic operation of the product. Any external scratches, stains or natural mechanical wear does not represent a defect in the product.

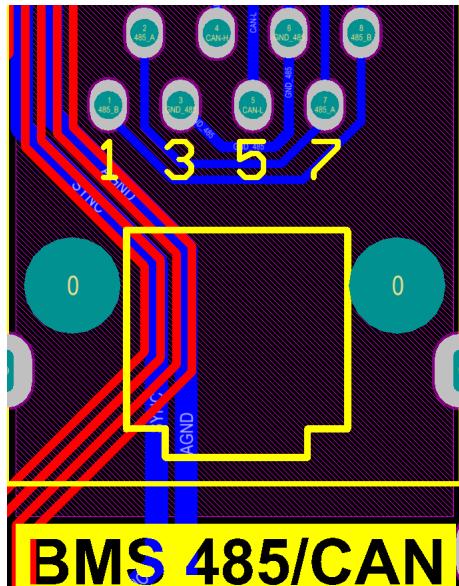
8. Limitation of Liability

In addition to the product warranty described above, the state and local laws and regulations provide financial compensation for the product's power connection (including violation of implied terms and warranties). The company hereby declares that the terms and conditions of the product and the policy cannot and can only legally exclude all liability within a limited scope.

9. Datasheet

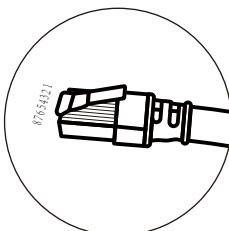
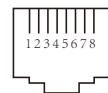


Model	AI-W5.1-3.6P1-EU-B	AI-W5.1-5P1-EU-B	AI-W5.1-6P1-EU-B	AI-W5.1-7P1-EU-B	AI-W5.1-7.6P1-EU-B	AI-W5.1-8P1-EU-B			
Battery Input Data									
Battery Type	Lithium-ion								
Battery Voltage Range(V)	40-60V								
Max. Charging Current(A)	90A	120A	135A	175A	190A	190A			
Max. Discharging Current(A)	90A	120A	135A	175A	190A	190A			
Charging Curve	3 Stages / Equalization								
External Temperature Sensor	yes								
Charging Strategy for Li-Ion Battery	Self-adaption to BMS								
PV String Input Data									
Max. DC Input Power(W)	4680W	6500W	7800W	10000W	9880W	10400W			
PV Input Voltage(V)	370V (125V-500V)								
MPPT Range(V)	150-425V								
Full Load DC Voltage Range	300-425V			200-425V					
Start-up Voltage(V)	125V								
PV Input Current(A)	13A+13A			26A+26A					
Max.PV Isc(A)	17A+17A			34A+34A					
No. of MPP Trackers	2								
No. of Strings per MPP Tracker	1+1			2+2					
AC Output Data									
Rated AC Output and UPS Power(W)	3600	5000	6000	7000	7600	8000			
Max. AC Output Power(W)	3960	5500	6600	7700	8360	8800			
Peak Power(off grid)	2 times of rated power, 10 S								
AC Output Rated Current(A)	16.4/15.7A	22.7/21.7A	27.3/26.1A	31.9/30.5A	34.5/33A	36.4/34.8A			
Max. AC Current(A)	18/17.2A	25/23.9A	30/28.7A	35.0/33.5A	38/36.3A	40/38.3A			
Max. Continuous AC Passthrough(A)	35A			40A					
Power Factor	0.8 leading to 0.8 lagging								
Output Frequency and Voltage	50/60Hz; L/N/PE 220/230V (single phase)								
Grid Type	Single Phase								
Total Harmonic Distortion (THD)	<3% (of nominal power)								
DC current injection	<0.5% In								
Efficiency									
Max. Efficiency	97.60%								
Euro Efficiency	96.50%								
MPPT Efficiency	>99%								
Protection									
PV Input Lightning Protection	Integrated								
Anti-islanding Protection	Integrated								
PV String Input Reverse Polarity Protection	Integrated								
Insulation Resistor Detection	Integrated								
Residual Current Monitoring Unit	Integrated								
Output Over Current Protection	Integrated								
Output Shorted Protection	Integrated								
Surge Protection	TYPE II(DC),TYPE II(AC)								
Over Voltage Category	OVC II(DC), OVC III(AC)								

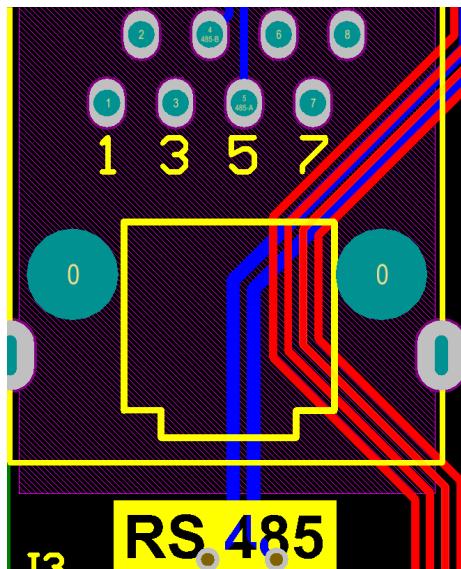
Certifications and Standards						
Grid Regulation	IEC 61727, IEC 62116, CEI 0-21, EN 50549, NRS 097, RD 140, UNE 217002, OVE-Richtlinie R25, G99, VDE-AR-N 4105					
EMC/Safety Regulation	IEC/EN 61000-6-1/2/3/4, IEC/EN 62109-1, IEC/EN 62109-2					
General Data						
Operating Temperature Range(°C)	-40 to +60 °C, >45 °C Derating					
Cooling	Intelligent Air Cooling					
Noise(dB)	<30 dB					
Communication with BMS	RS485; CAN					
Weight(kg)	31.6					
Cabinet size(mm)	720W×399.2H×256D (Excluding connectors and brackets)					
Protection Degree	IP65					
Installation Style	Floor-Mounted					
Warranty	5 years					
Model	AI-W5.1-B					
Main Parameter						
Battery Chemistry	LiFePO ₄					
Battery Module Energy (kWh)	5.12					
Battery Module Voltage (V)	51.2					
Battery Module Capacity (Ah)	100					
Scalability	1	2	3	4	5	6
Nominal Voltage (V)	51.2					
Operating Voltage(V)	43.2-57.6					
Nominal Energy (kWh)	5.12	10.24	15.36	20.48	25.6	30.72
Usable Energy (kWh)	4.6	9.2	13.8	18.4	23	27.6
Charge/Discharge Current (A)	Recommend	50	100	150	200	250
	Max.	100	180	250	250	250
Peak(10s,25°C)	150	270	360	360	360	360
Other Parameter						
Recommend Depth of Discharge	90%					
System Dimension (W/D/H, mm)	720*255*569	720*255*850	720*255*1131	720*255*1412	720*255*1693	720*255*1974
System Weight (kg)	74.5	127.5	180.5	233.5	286.5	339.5
Battery Module Dimension (W/D/H, mm)	720*255*300 (without terminal parts)					
Battery Module Weight (kg)	53					
Master LED Indicator	Battery module: 3LED (working, alarming, protecting). PDU module: 5LED (SOC:20%-100%)&3LED (working, alarming, protecting)					
IP Rating of Enclosure	IP65 (after stacking)					
Operating Temperature	Charge: 0 to 55°C / Discharge: -20°C to 55°C					
Storage Temperature	0°C to 35°C					
Humidity	5% to 95%					
Altitude	≤2000m					
Installation	Floor-Mounted					
Communication Port	CAN2.0, RS485					
Cycle Life	≥6000(25°C±2°C, 0.5C/0.5C, 90%DOD, 70%EOL)					
Energy Throughput	16MWh(Battery Module @70%EOL)					
Warranty Period	10 years					
Certification	UN38.3, IEC62619, CE, UK, VDE2510-50, CEI 0-21, CE-LVD, CEC					


10. Appendix I

Definition of RJ45 Port Pin for BMS 485/CAN.

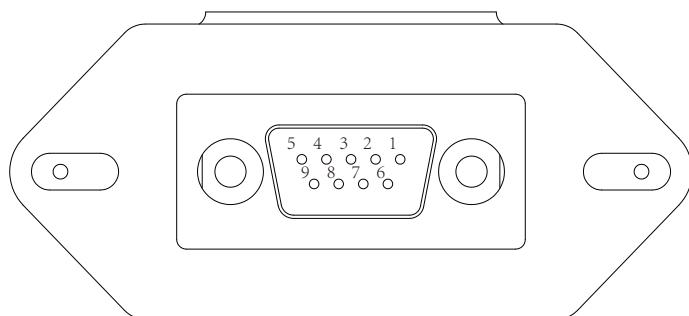
No.	BMS 485/CAN Pin
1	485_B
2	485_A
3	GND_485
4	CAN-H
5	CAN-L
6	GND_485
7	485_A
8	485_B



BMS 485/CAN Port


Definition of RJ45 Port Pin for RS 485.

This port is used to communicate with energy meter.

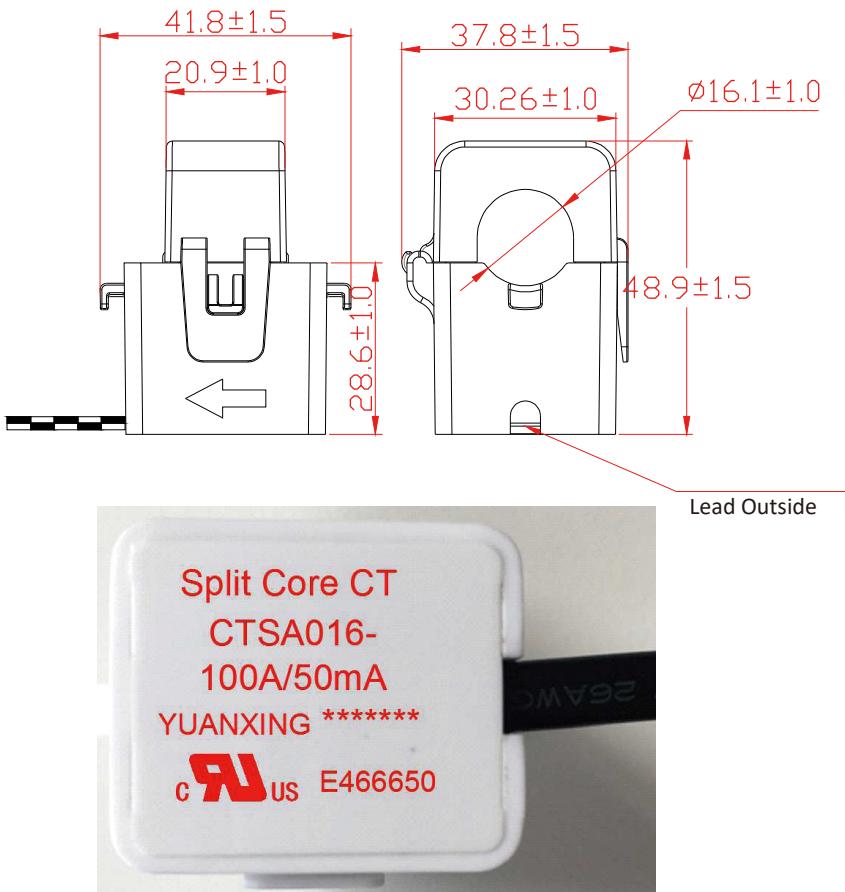
No.	RS 485 Pin
1	--
2	--
3	--
4	485-B
5	485-A
6	--
7	--
8	--



RS 485 Port

RS232

No.	WIFI/RS232
1	
2	TX
3	RX
4	
5	D-GND
6	
7	
8	
9	12Vdc



WIFI/RS232

This RS232 port is used to connect the wifi datalogger

11. Appendix II

1. Split Core Current Transformer (CT) dimension: (mm)
2. Secondary output cable length is 4m.

12. EU Declaration of Conformity

within the scope of the EU directives

- Electromagnetic compatibility 2014/30/EU (EMC)
- Low Voltage Directive 2014/35/EU (LVD)
- Restriction of the use of certain hazardous substances 2011/65/EU (RoHS)

NINGBO DEYE INVERTER TECHNOLOGY CO., LTD. confirms herewith that the products described in this document are in compliance with the fundamental requirements and other relevant provisions of the above mentioned directives. The entire EU Declaration of Conformity and certificate can be found at <https://www.deyeinverter.com/download/#hybrid-inverter-5>.

EU Declaration of Conformity

Product: **Hybrid Inverter**

Models: AI-W5.1-3.6P1-EU-B-ESS; AI-W5.1-5P1-EU-B-ESS; AI-W5.1-6P1-EU-B-ESS; AI-W5.1-7P1-EU-B-ESS;
AI-W5.1-7.6P1-EU-B-ESS; AI-W5.1-8P1-EU-B-ESS;

Name and address of the manufacturer: Ningbo Deye Inverter Technology Co., Ltd.
No. 26 South YongJiang Road, Daqi, Beilun, NingBo, China

This declaration of conformity is issued under the sole responsibility of the manufacturer. Also this product is under manufacturer's warranty.

This declaration of conformity is not valid any longer: if the product is modified, supplemented or changed in any other way, as well as in case the product is used or installed improperly.

The object of the declaration described above is in conformity with the relevant Union harmonization legislation: The Low Voltage Directive (LVD) 2014/35/EU; the Electromagnetic Compatibility (EMC) Directive 2014/30/EU; the restriction of the use of certain hazardous substances (RoHS) Directive 2011/65/EU.

References to the relevant harmonized standards used or references to the other technical specifications in relation to which conformity is declared:

LVD:	
EN 62109-1:2010	●
EN 62109-2:2011	●
EMC:	
EN IEC 61000-6-1:2019	●
EN IEC 61000-6-2:2019	●
EN IEC 61000-6-3:2021	●
EN IEC 61000-6-4:2019	●
EN IEC 61000-3-2:2019+A1:2021	●
EN 61000-3-3:2013/A2:2021/AC:2022-01	●
EN IEC 61000-3-11:2019	●
EN 61000-3-12:2011	●
EN 55011:2016/A2:2021	●

Nom et Titre / Name and Title:

Bard Dai

Senior Sales Manager, Sales Engineer
Ningbo Deye Inverter Technology Co., Ltd.

Au nom de / On behalf of:

Ningbo Deye Inverter Technology Co., Ltd.

Date / Date (yyyy-mm-dd):

2023-12-4

A / Place:

Ningbo, China

EU DoC - v1

Ningbo Deye Inverter Technology Co., Ltd.
No. 26 South YongJiang Road, Daqi, Beilun, NingBo, China

NINGBO DEYE ESS TECHNOLOGY Co., Ltd.

Add.: NO.18 Zhenlong 2 Road, Binhai Economic Development Zone,
Cixi, Ningbo, Zhejiang, China

Tel.: 0086-0574-86120560

Fax.: 0086-0574-86228852

E-mail: saless@deye.com.cn

Web.: www.deyeess.com

30240301002400