

All-in-One ESS (LV)

RW-F5.3-1H3

RW-F5.3-2H3

USER MANUAL

Issue: 05
Date: 20250730

Contents

About This Manual	3
How to Use This Manual	3
2. Product Introduction	5
3. Specifications	5
4. Unpacking Guide	7
5. Packing List	7
5.1 Parts List	7
5.2 Product handling requirements	8
5.3 Installations Tools	8
6. Security Introduction	10
6.1 Preparation Before Connection	10
6.2 In Use	11
7. Quick Guide	12
7.1 Product Dimensions	12
7.2 Operation Interface	13
7.3 Display ICONS	14
8. Mechanical Installation	15
8.1 Considering the following points before installation:	15
8.2 Mounting the ESS	15
8.3 Function port definition	17
8.3.1 Interface definition	18
8.4 Grid connection and backup load connection	22
8.5 PV Connection	25
8.5.1 PV Module Selection:	25
8.5.2 PV Module Wire Connection:	25
8.6 CT Connection	28
8.7 Meter Connection	29
8.8 Earth Connection (mandatory)	30
9. Product Wiring Instructions	31
9.1 Cables for Battery Expansion	31
9.2 Parallel Capacity Expansion	31
9.3 Typical Application Diagram of Diesel Generator	32
9.4 Single Phase Parallel Connection Diagram	33
9.5 Three Phase Parallel Inverter	34
9.6 Wiring System for Inverter	35
10. Activation product	36
10.1 Precautions during Use	36
10.2 Monitoring Platform	37
10.3 How to connect the All-in-One ESS to the router via web	38
10.4 How to connect in APP	42
10.5 USER MANUAL for SOLARMAN Smart APP	44

11.LCD Display Icons	45
11.1 Main Screen	45
11.1.1 LCD Operation Flow Chart.....	46
11.2 Solar Power Curve	47
11.3 Curve Page-Solar & Load & Grid	48
11.4 System Setup Menu	49
11.5 Basic Setup Menu	49
11.6 Battery Setup Menu	50
11.7 System Work Mode Setup Menu	52
11.8 Grid Setup Menu	54
11.9 The Method of CEI-021 Standard Self-Check	56
11.10 Generator Port Use Setup Menu	58
11.11 Advanced Function Setup Menu	59
11.12 Device Info Setup Menu	60
12. Battery Maintenance	61
13.Fault Content	61
13.1 Fault Information and Processing	61
13.2 Low Voltage Fault Analysis Method	61
14.FAQ	67
15.After-Sales Service	68
16. EU Declaration of Conformity	68

About This Manual

The manual mainly describes the product information, guidelines for installation, operation and maintenance. The manual cannot include complete information about the photovoltaic (PV) system.

How to Use This Manual

Read the manual and other related documents before performing any operation on the inverter. Documents must be stored carefully and be available at all times.

Contents may be periodically updated or revised due to product development. The information in this manual is subject to change without notice. The latest manual can be acquired via service@deye.com.cn

1. Safety Introductions

Labels description

Label	Description
	Caution, risk of electric shock symbol indicates important safety instructions, which if not correctly followed, could result in electric shock.
	The DC input terminals of the inverter must not be grounded.
	Surface high temperature, Please do not touch the inverter case.
	The AC and DC circuits must be disconnected separately, and the maintenance personnel must wait for 5 minutes before they are completely powered off before they can start working.
	CE mark of conformity
	Please read the instructions carefully before use.
	Indicate that this product is recyclable
	Do not place near open fire or incinerate. Do not use near heaters or hot temperature source.

	Attention! The risk of explosion.
	Li-ion battery
	Do not tread
	Do not run and chase
	Do not touch with your palm
	Symbol for the marking of electrical and electronics devices according to Directive 2002/96/ EC. Indicates that the device, accessories and the packaging must not be disposed as unsorted municipal waste and must be collected separately at the end of the usage. Please follow Local Ordinances or Regulations for disposal or contact an authorized representative of the manufacturer for information concerning the decommissioning of equipment.

- This chapter contains important safety and operating instructions. Read and keep this manual for future reference .
- Before using the inverter, please read the instructions and warning signs of the battery and corresponding sections in the instruction manual. Do not disassemble the inverter. If you need maintenance or repair, take it to a professional service center.
- Improper reassembly may result in electric shock or fire .
- To reduce risk of electric shock, disconnect all wires before attempting any maintenance or cleaning. Turning off the unit will not reduce this risk.
- Caution: Only qualified personnel can install this device with battery.
- Never charge a frozen battery.
- For optimum operation of this inverter, please follow required specification to select appropriate cable size. It is very important to correctly operate this inverter.
- Be very cautious when working with metal tools on or around batteries . Dropping a tool may cause a spark or short circuit in batteries or other electrical parts, even cause an explosion .Please strictly follow installation procedure when you want to disconnect AC or DC terminals . Please refer to "installation" section of this manual for the details .
- Grounding instructions - this inverter should be connected to a permanent grounded wiring system . Be sure to comply with local requirements and regulation to install this inverter. Never cause AC output and DC input short circuited. Do not connect to the mains when DC input short circuits .

2. Product Introduction

This is an all-in-one hybrid inverter Energy storage system, combining functions of inverter, solar charger and LFP battery to offer uninterrupted power support with portable size. its comprehensive LCD display offers user configurable and easy accessible button operation such as battery charging, AC/solar charging, and acceptable input voltage based on different applications .

3. Specifications

Model	RW-F5.3-2H3	RW-F5.3-1H3
AC Technical Specification		
Rated AC Input/Output Active Power (W)	3600/3600	5000/5000
Max AC Input/Output Apparent Power (VA)	3960	5500*
Peak Power (off grid)	2 time of rated power, 10s	
Rated AC Input/Output Current (A)	16.4/ 15.7	22.8/21.8
Max. AC Input/Output Current (A)	18/ 17.3	25/24
Max Continuous AC Passthrough (grid to load) (A)		35
Rated Input/Output Voltage/Range (V)	220/230, 0.85Un to 1.1Un	
Grid Connection Form	L+N+PE	
Rated Input/Output Grid Frequency/Range	50Hz/45Hz-55Hz , 60Hz/55Hz-65Hz	
Power Factor Adjustment Range	0.8 leading to 0.8 lagging	
Total Harmonic Distortion (THD)	<3% (of nominal power)	
DC injection current (A)	<0.5% In	
DC Technical Specification		
Max. PV Access Power (W)	7200	10000
Max. PV Input Power (W)	5760	8000
Max. PV Input Voltage (V)		500
Start Up PV Voltage (V)		125
MPPT Voltage Range (V)	150 to 425	
Full Load MPPT Voltage Range (Vdc)	300 to 425	
Rated PV Input Voltage (V)		370
Max. Operating PV Input Current (A)	18+18	
Max. PV Input Short-circuit Current (A)	27+27	
Number of MPP Trackers		2
No. of Strings MPP Tracker		1 + 1
Battery Chemistry	LiFePO4	
Battery Nominal Voltage (V)	51.2	

Battery Energy Configuration (kWh)	5.32	
Max. Charging/Discharging Current (A)	75	100
Battery Operating Voltage (V)	44.8 to 57.6	
Battery Cycle Life	$\geq 6000 (@25^{\circ}\text{C} \pm 2^{\circ}\text{C}, 0.5\text{C}/0.5\text{C}, 70\% \text{EOL})$	
General Technical Specification		
Dimension (W x D x H,mm)	616 × 191 × 690 (Excluding connectors and brackets)	
Weight Appr. (kg)	74.5	
Ingress Protection (IP) Rating	IP65	
Operating Temperature Range	-10°C to 55°C(>45°C derating)	
Permissible Ambient Humidity	0 to 100%	
Permissible Altitude	3000m	
Inverter Topology	Non-Isolated	
Over Voltage Category	OVC II(DC),OVC III(AC)	
Pollution degree (PD)	PD3	
Type Of Cooling	Natural Cooling	
Noise(dB)	<45	
Display	Touch LCD	
Monitor Mode	WIFI, Bluetooth	
Installation Style	Wall-Mounted	
Max. Efficiency	97%	
Max. charging/discharging Efficiency	95.5%	
MPPT Efficiency	>99%	
Safety EMC / Standard	IEC/EN 61000-6-1/2/3/4, IEC/EN 62109-1, IEC/EN 62109-2, IEC62619, UN38.3	
Grid Regulation	IEC 61727, IEC 62116, CEI 0-21, EN 50549, NRS 097, RD 140, UNE 217002, OVE-Richtlinie R25, G99, VDE-AR-N 4105	

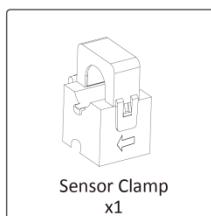
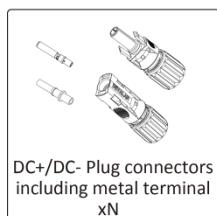
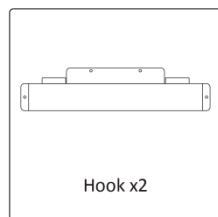
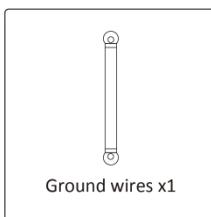
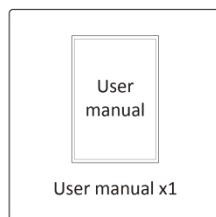
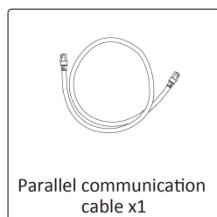
* Derating to 4600VA in Germany

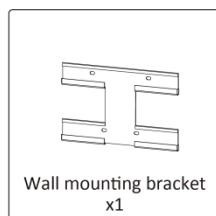
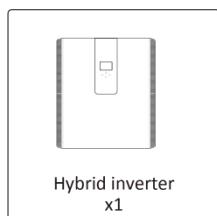
4.Unpacking Guide

Check the outer packing

Before unpacking the outer package, check the outer package for visible damage, such as holes, cracks, or other signs of possible internal damage, and check the energy storage model. If there is any abnormal packaging or energy storage model does not match, do not open, and contact your dealer as soon as possible.

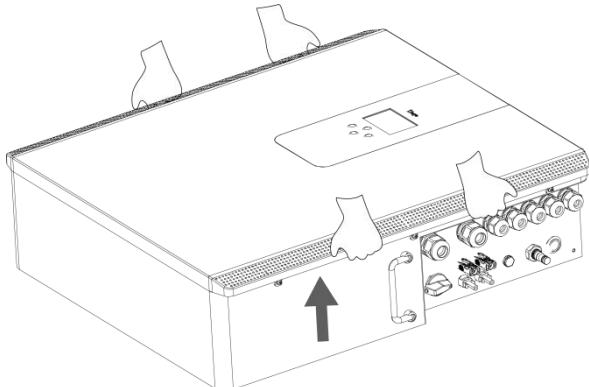
Check deliverables



After unpacking the outer packaging of the energy storage, check that the deliverables are complete and there is no obvious external damage. If anything is missing or damaged, contact your dealer.

Note: For the quantity of deliverables shipped with the box, please refer to the Packing List in the box.

5.Packing List


5.1 Parts List

Check the equipment before installation. Please make sure nothing is damaged in the package. You should have received the items in the following package:

5.2 Product handling requirements

Lift the inverter out of the packing box and transport it to designated installation location.

CAUTION!

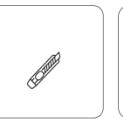
- Improper handling may cause personal injury!
- Arrange an appropriate number of personnel to carry the inverter according to its weight, and installation personnel should wear protective equipment such as anti-impact shoes and gloves.
- Placing the inverter directly on a hard ground may cause damage to its metal enclosure. Protective materials such as sponge pad or foam cushion should be placed underneath the inverter.
- Move the inverter by one or two people or by using a proper transport tool.
- Move the inverter by holding the handles on it. Do not move the inverter by holding the terminals.

5.3 Installations Tools

Installation tools can refer to the following recommended ones. Also, use other auxiliary tools on site.

Protective goggles

Anti-dust mask


Earplugs

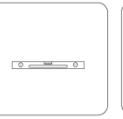
Work gloves

Work shoes

Utility Knife

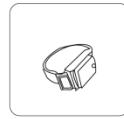
Slotted screwdriver

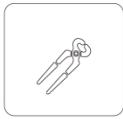
Cross screwdriver


Percussion drill

Pliers

Marker

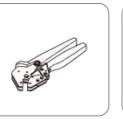

Level


Rubber hammer

socket wrenches set

Anti-static wrist strap

Wire cutter


Wire stripper

Hydraulic pliers

Heat gun

Crimping tool 4-6mm²

Solar connector wrench

Multimeter ≥1100 Vdc

RJ45 crimping plier

Cleaner

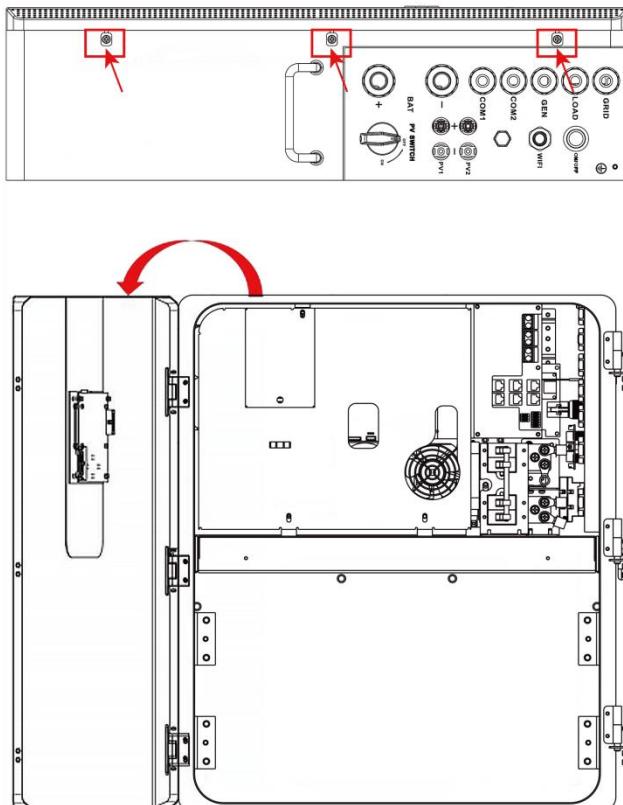
6. Security Introduction

Warning!

1. It is very important and necessary to read the user manual (attached) carefully before installing or using the battery. Failure to do so or to follow any instructions or warnings in this document may result in electric shock, serious injury, or possible damage to the battery, rendering it inoperable.
2. If the battery is stored for a long time, it is recommended to charge the product once a month or So, and the Soc should not be less than 50% .
3. Charge the battery within 48 hours after it is fully discharged.
4. Do not expose the cable.
5. Disconnect all power supplies during maintenance .
6. If any exception occurs, please contact the supplier within 24 hours.
7. Do not use cleaning solvents to clean the battery.
8. Do not expose this product to flammable or irritating chemicals or vapors .
9. It is prohibited to paint any part of this product, including any internal or external components .
10. Direct or indirect damages caused by the above reasons do not include warranty claims.
11. Do not insert any foreign matter into any part of the product.

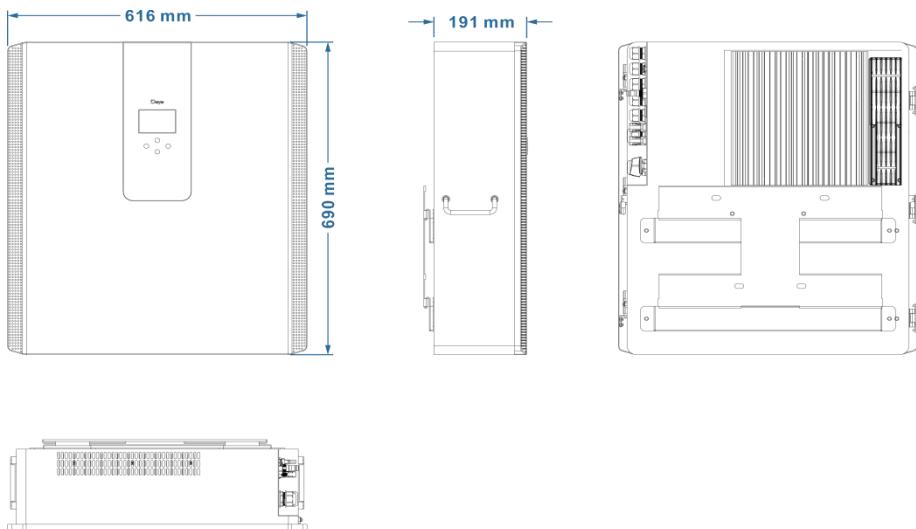
6.1 Preparation Before Connection

Warning!


1. After unpacking, please check the product and packing list. If the product is damaged or missing, please contact the local retailer.
2. Before installation , disconnect the power supply from the power grid and ensure that the battery is turned off.
3. Cables must be connected correctly and do not short-circuit external devices .
4. Keep away from fire .
5. Do not use non-official parts or accessories .
6. Do not stack other heavy objects on the product.

6.2 In Use

1. If you need to move or repair the product, you must disconnect the power supply and completely turn off the product.
2. Do not connect batteries of different models.
3. Disassembly is prohibited.
4. In case of fire, only liquid fire extinguishers can be used. Dry fire extinguishers are prohibited.
5. Please AVOID direct sunlight, rain exposure, snow laying up during installation and operation.


Before connecting all wires, please take off the metal cover by removing screws as shown below:

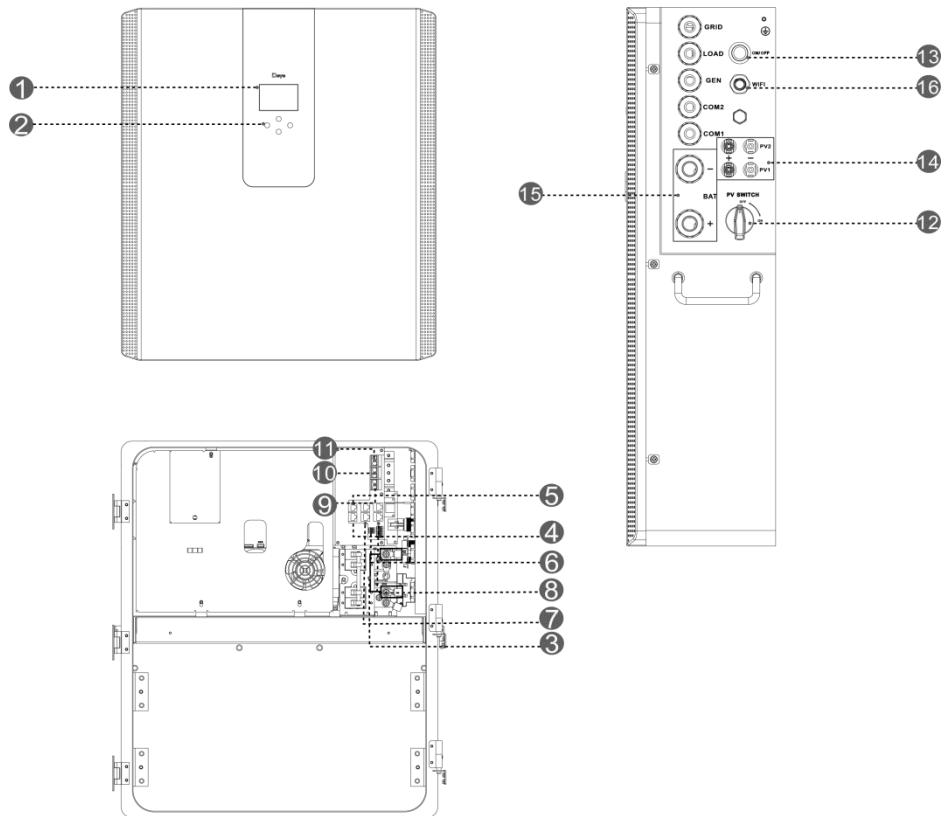
- Remove the three screws pointed by the arrow.
- Open the three latches to open the lid of the product.

7. Quick Guide

7.1 Product Dimensions

Unit : mm

7.2 Operation Interface

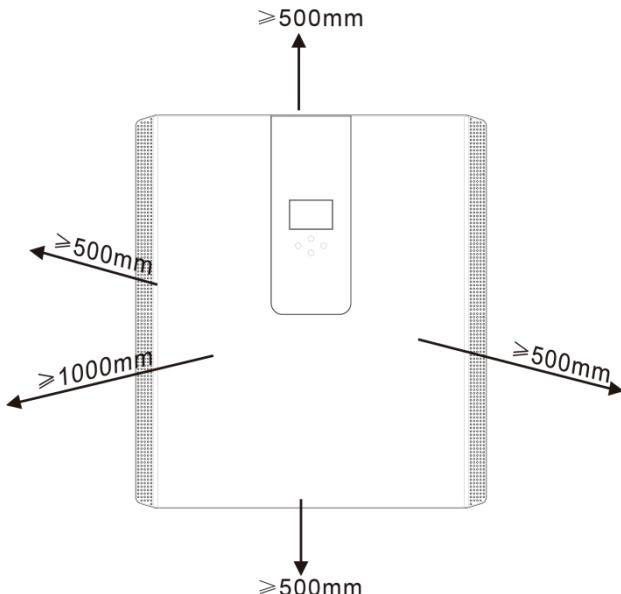


Front panel display

Function Button	Description
ESC	exit mode
Up	Go back to the previous choice
Down	skip to the next selection
Enter	confirm selection

7.3 Display Icons

Product Overview

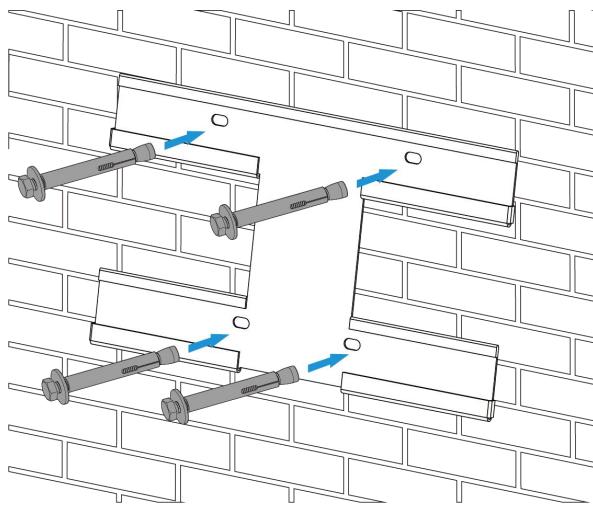


1. LCD display	7. Inverter Parallel port	12. DC Switch
2. Function Buttons	8. Battery Parallel port	13. Power on/off button
3. Battery input connectors	9. Generator input	14. PV input
4. RS485/CAN Port	10. Load	15. Battery
5. Meter Port	11. Grid	16. WiFi Interface
6. Function Port		

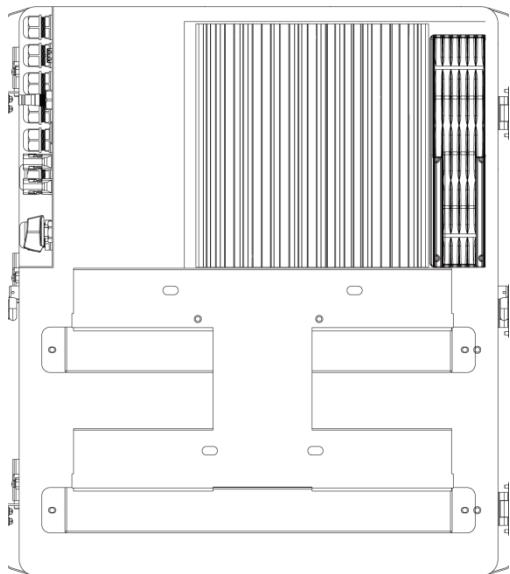
8. Mechanical Installation

8.1 Considering the following points before installation:

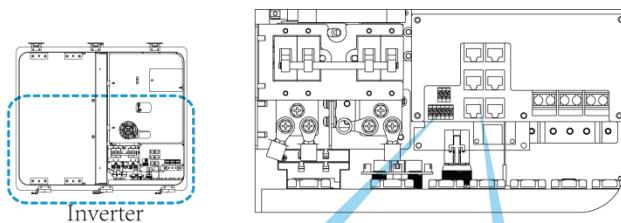
- Please select a vertical wall with load-bearing capacity for installation, suitable for installation on concrete or other non-flammable surfaces, installation is shown below.
- Install this inverter at eye level in order to allow the LCD display to be read at all times.
- The ambient temperature is recommended to be between -10~40°C to ensure optimal operation.
- Be sure to keep other objects and surfaces as shown in the diagram to guarantee sufficient heat dissipation and have enough space for removing wires.

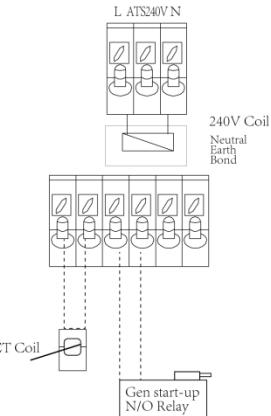


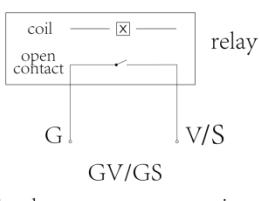
For proper air circulation to dissipate heat, the clearance is about: not less than 200mm on the side, not less than 500mm above, not less than 100mm from the ground, and 100 cm further ahead.

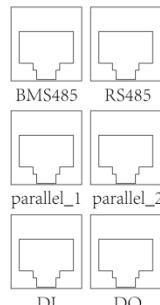

8.2 Mounting the ESS

Remember that this ESS is heavy! Please be careful when lifting out from the package. Choose the recommend drill head(as shown in below pic) to drill 4 holes on the wall,82-90mm deep.


- Use a proper hammer to fit the expansion bolt into the holes.
- Carry the ESS and holding it, make sure the hanger aim at the expansion bolt, fix the ESS on the wall.
- Fasten the screw head of the expansion bolt to finish the mounting.


Wall mounting bracket installation


8.3 Function port definition


Inverter

BT: Battery temperature sensor for lead acidbattery.
 GV/GS: Dry contact signal for startup the diesel generator.
 When the "GEN signal" is active, the opencontact (GV/GS) will switch on (no voltage output). if the "signal ISLAND MODE" is ticked, the Gsport will be the dry contact signal for startup the diesel generator. If "Signal ISLAND MODE" is not ticked, the GV port will be the dry contact signal for startup the diesel generator.
 ATS: If the conditions are met, it will output 230 Vac.

(diesel generator startup signal)

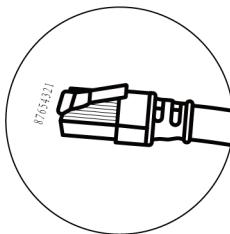
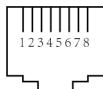
RS 485: RS485 port for energy metercommunication.

BMS 485/CAN: 485/CAN port for battery-communication.

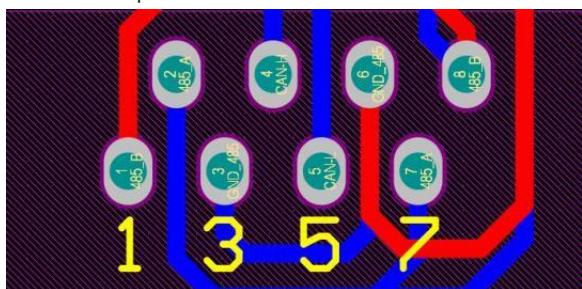
DRMs: for Australia market only.

Parallel 1: Parallel communication port1(-CAN interface).

Parallel 2: Parallel communication port2(-CAN interface).



DI: Connect "Do" Terminal of Previousbattery, for communication between multiple parallel batteries.

DO: Connect "DI" Terminal of Next battery, for communication between multiple parallel batteries.


8.3.1 Interface definition

Definition of RJ45 Port Pin for BMS 485/CAN.

No.	BMS 485/CAN Pin
1	485-B
2	485-A
3	GND_485
4	CAN-H
5	CAN-L
6	GND_485
7	485-A
8	485-B

BMS485/CAN port

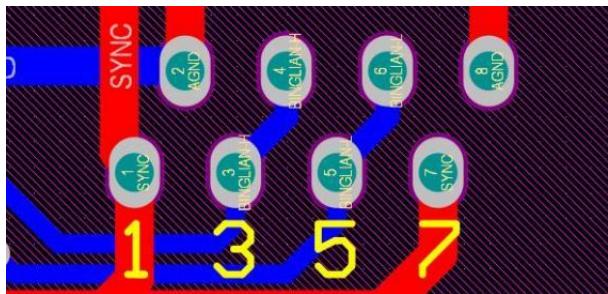
Definition of RJ45 Port Pin for RS 485.

No.	RS485 Pin
1	485-B
2	485-A
3	
4	485-B
5	485-A
6	
7	485-A
8	485-B

RS 485 Port

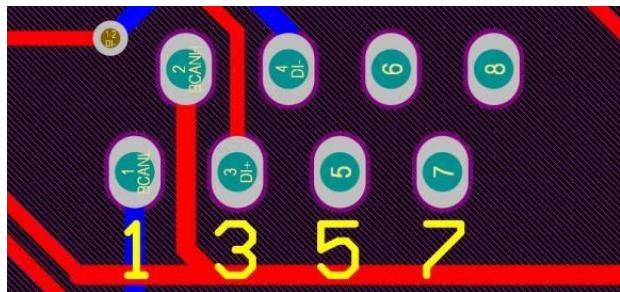
Definition of RJ45 Port Pin for parallel 1.

No.	parallel 1 Pin
1	SYNC
2	AGND
3	BINGLIAH-H
4	BINGLIAH-H
5	BINGLIAH-L
6	BINGLIAH-L
7	SYNC
8	AGND


RS 485 Port

Definition of RJ45 Port Pin for parallel 2.

No.	parallel 2Pin
1	SYNC
2	AGND
3	BINGLIAH-H
4	BINGLIAH-H
5	BINGLIAH-L
6	BINGLIAH-L
7	SYNC
8	AGND


Definition of RJ45 Port Pin for parallel 2.

Definition of RJ45 Port Pin for DI.

No.	DI Pin
1	CAN-L
2	CAN-H
3	DI+
4	DI-
5	
6	
7	
8	


DI Port

Definition of RJ45 Port Pin for DO

No.	DOPin
1	CAN-L
2	CAN-H
3	DO+
4	DO-
5	
6	
7	
8	

DO Port

8.4 Grid connection and backup load connection

Before connecting to the grid, a separate AC breaker must be installed between the inverter and the grid, and also between the backup load and the inverter. This will ensure the inverter can be securely disconnected during maintenance and fully protected from over current. For the 3.6kW model, the recommended Ac breaker for backup load 3.6/5kw is 40A. For the 3.6/5kW model, the recommended Ac breaker for grid 3.6/5kw is 40A. When connecting to grid, for 3.6kw, the recommended AC breaker is C-type, 100A; for 5 kw, the recommended AC breaker is C-type, 125A.

There are three terminal blocks with "Grid" "Load" and "GEN" markings. Please do not misconnect input and output connectors.

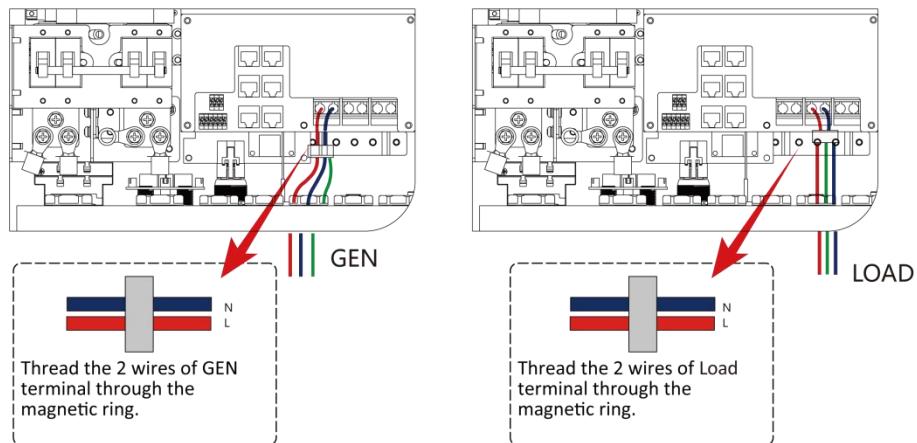
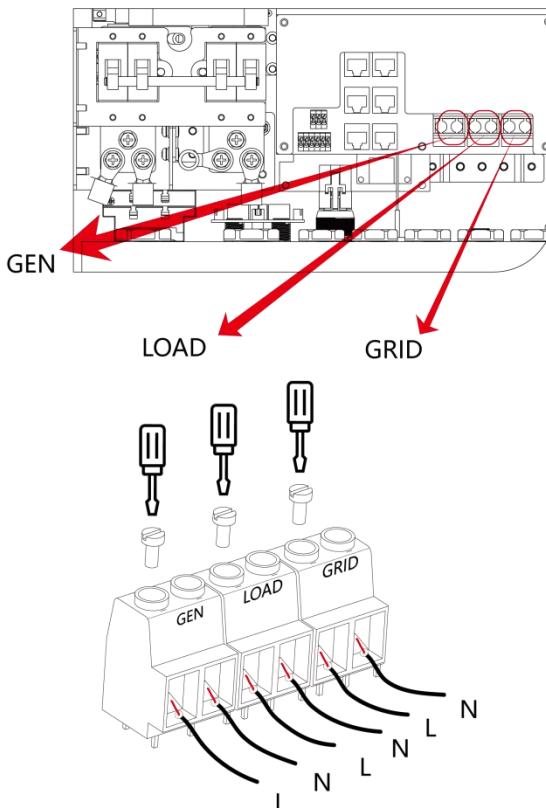
Note!

In final installation, breaker certified according to IEC 60947-1 and IEC 60947-2 shall be installed with the equipment.

All wiring must be performed by a qualified personnel. It is very important for system safety and efficient operation to use appropriate cable for AC input connection. To reduce risk of injury, please use the proper recommended cable as below.

Grid connection and backup load connection (Copper wires)

Model	Wire Size	Cable(mm ²)	Torque Value (max)
3.6/5kW	8AWG	6.0	1.2Nm



Grid connection and backup load connection (Copper wires) (Bypass)

Model	Wire Size	Cable(mm ²)	Torque Value (max)
3.6/5kW	8AWG	6	1.2Nm

Chart 8-4-1: Recommended Size for AC wires

Please follow below steps to implement AC input/output connection:

1. Before making Grid, load and Gen port connection, be sure to turn off Ac breaker or disconnector first.
2. Remove insulation sleeve 10mm length, unscrew the bolts. For GRID port, just insert the wires into the terminals according to polarities indicated on the terminal block. for GEN and Load ports, thread the wires through the magnetic ring firstly, then insert these wires into the terminals according to polarities indicated on the terminal block. Tighten the terminal screws and make sure the wires are completely and safely connected.

Be sure that AC power source is disconnected before attempting to wire it to the unit.

3. Then, insert AC output wires according to polarities indicated on the terminal block and tighten terminal. Be sure to connect corresponding N wires and PE wires to related terminals as well.
4. Make sure the wires are securely connected.
5. Appliances such as air conditioner are required at least 2-3 minutes to restart because it is required to have enough time to balance refrigerant gas inside of circuit. If a power shortage occurs and recovers in short time, it will cause damage to your connected appliances. To prevent this kind of damage, please check manufacturer of air conditioner if it is equipped with time-delay function before installation. Otherwise, this inverter will trigger overload fault and cut off output to protect your appliance but sometimes it still causes internal damage to the air conditioner.

8.5 PV Connection

Before connecting to PV modules, please install a separately DC circuit breaker between inverter and PV modules. It is very important for system safety and efficient operation to use appropriate cable for PV module connection. To reduce risk of injury, please use the proper recommended cable size as below.

Model	Wire Size	Cable(mm ²)
3.6/5kW	12AWG	2.5

Chart 8-5-1: Cable size

To avoid any malfunction, do not connect any PV modules with possible current leakage to the inverter. For example, grounded PV modules will cause current leakage to the inverter. When using PV modules, please ensure the PV+ & PV- of solar panel is not connected to the system ground bar.

It is requested to use PV junction box with surge protection. Otherwise, it will cause damage on inverter when lightning occurs on PV modules.

8.5.1 PV Module Selection:

When selecting proper PV modules, please be sure to consider below parameters:

- 1) Open circuit Voltage (Voc) of PV modules not exceeds max. PV array open circuit voltage of inverter.
- 2) Open circuit Voltage (Voc) of PV modules should be higher than min. start voltage.3)The PV modules used to connected to this inverter shall be Class A rating certified according to IEC 61730.

Inverter Model	3.6kW	5kW
PV Input Voltage	370V (125V-500V)	
PV Array MPPT Voltage Range	150V-425V	
No. of MPP Trackers	2	
No. Of Strings MPP Tracker	1+1	

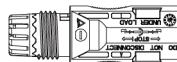
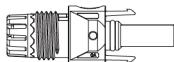
Chart 8-5-2

8.5.2 PV Module Wire Connection:

1. switch the Grid supply Main switch(AC)OFF.
2. Switch the Dc isolator OFF.
3. Assemble PV input connector to the inverter.

Safety Hint:

When using PV modules, please ensure the PV+ & PV- of solar panel is not connected to the system ground bar.



Safety Hint:

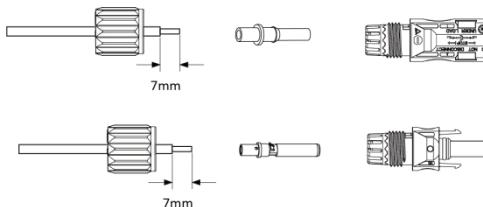
Before connection, please make sure the polarity of the output voltage of PV array matches the "DC +" and "Dc -" symbols.

Safety Hint:

Before connecting inverter, please make sure the PV array open circuit voltage is within the 500V of the inverter.

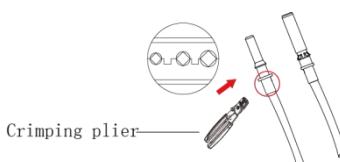
Pic 8.5.1 DC+ male connector

Pic 8.5.2 DC- female connector

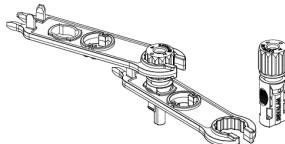


Safety Hint:

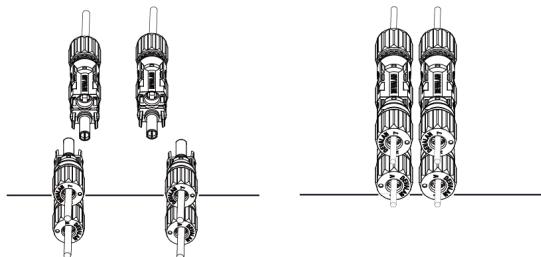
Please use approved DC cable for PV system.


The steps to assemble the DC connectors are listed as follows:

a) Strip off the DC wire about 7mm, disassemble the connector cap nut (see picture 8.5.3).


Pic 8.5.3 Disassemble the connector cap nut

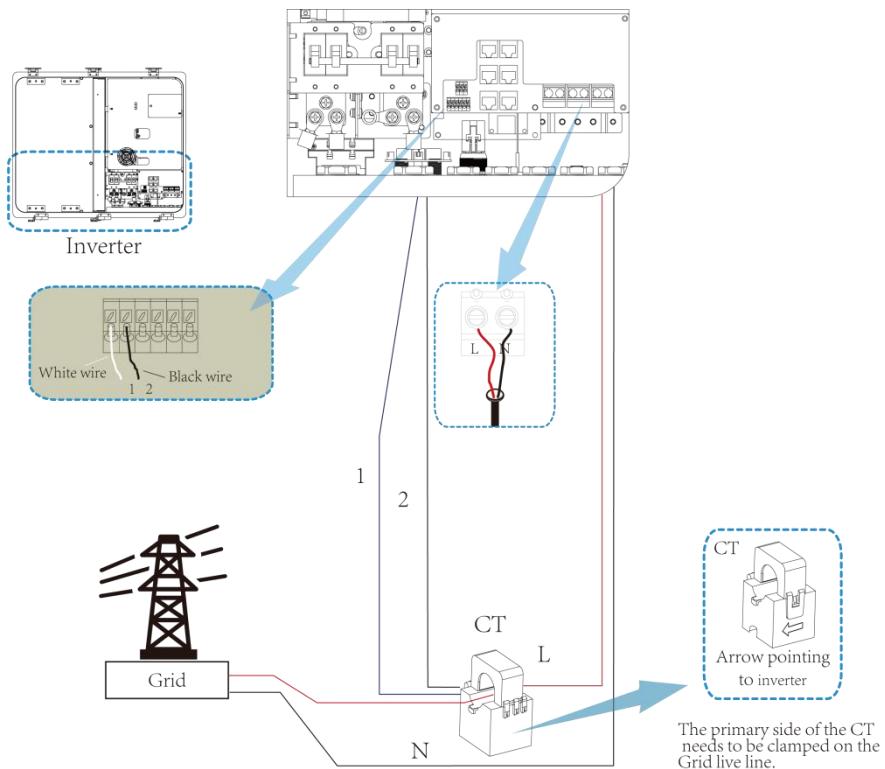
b) Crimping metal terminals with crimping pliers as shown in picture 7.5.4.


Pic 8.5.4 Crimp the contact pin to the wire

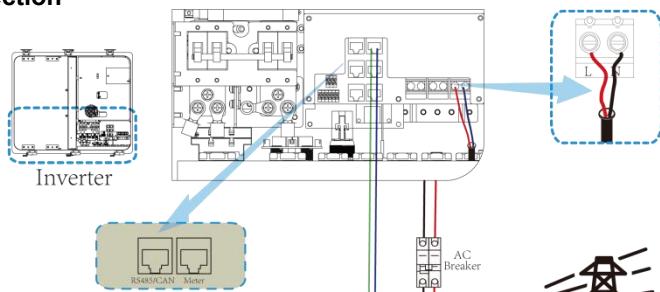
c) insert the contact pin to the top part of the connector and screw up the cap nut to the top part of the connector.(as shown in picture 7.5.5).

Pic 8.5.5 connector with cap nut screwed on

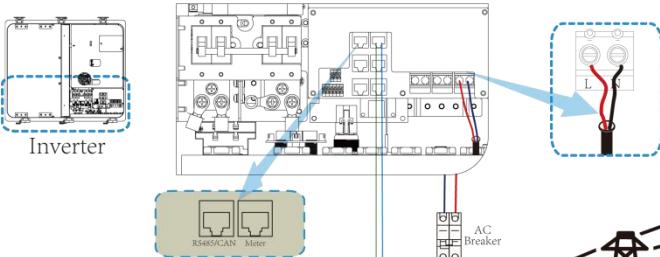
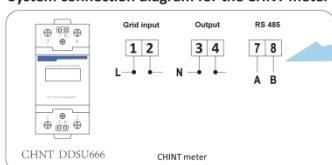
d) Finally insert the DC connector into the positive and negative input of the inverter, shown as picture 7.5.6.


Pic 8.5.6 DC input connection

Warning!

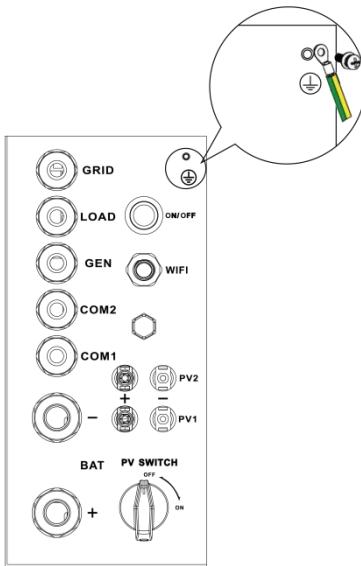

Sunlight shines on the panel will generate voltage , high voltage in series may cause danger to life . Therefore , before connecting the DC input line , the solar panel needs to be blocked by the opaque material and the DC switch should be OFF , otherwise , the high voltage of the inverter may lead to life-threatening conditions .

8.6 CT Connection

*Note: when the reading of the load power on the LCD is not correct, please reverse the Ct arrow.

8.7 Meter Connection


System connection diagram for the CHINT meter

System connection diagram for the Eastron meter

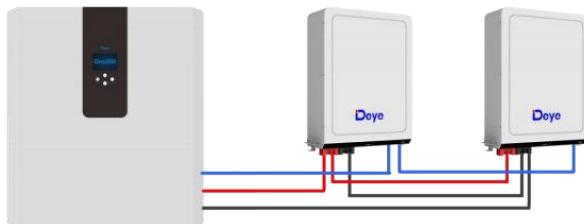
8.8 Earth Connection (mandatory)

Earth connection (Copper wires)

Model	Wire Size	Cable(mm^2)	Torque Value (max)
3.6/5kW	8AWG	6.0	1.2Nm

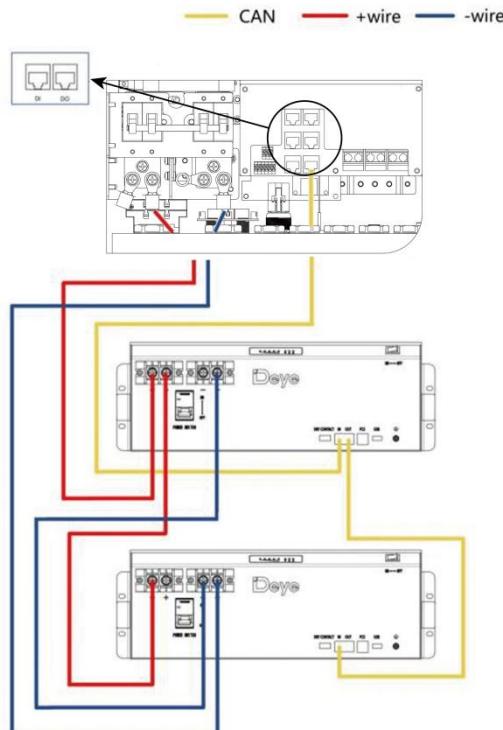
Earth connection (Copper Wires) (Bypass)

Model	Wire Size	Cable(mm^2)	Torque Value (max)
3.6/5kW	8AWG	6	1.2Nm

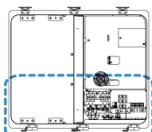

Warning!

Inverter has built-in leakage current detection circuit. The type A RCD can be connected to the inverter for protection according to the local laws and regulations. If an external leakage current protection device is connected, its operating current must be equal to 300 mA or higher, otherwise inverter may not work properly.

9. Product Wiring Instructions


9.1 Cables for Battery Expansion

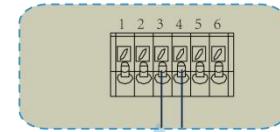
Easy to expand, support multiple parallel, support up to 16 all-in-one parallel(57.6kW/84.8kWh). At the same time, it also supports Deye 5.3kWh battery expansion, supporting a maximum of 31 battery packs in parallel with a maximum capacity of 169kWh.


Blue is the network cable, red is the positive electrode, and black is the negative electrode.

9.2 Parallel Capacity Expansion

9.3 Typical Application Diagram of Diesel Generator

— L wire — N wire — PE wire



Inverter

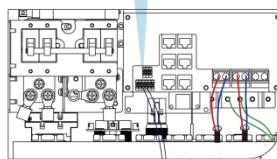
① DC Breaker for battery
RW-F5.3-1H3:125A DC breaker
RW-F5.3-2H3:125A DC breaker

② AC Breaker for gen port
RW-F5.3-1H3:63A DC breaker
RW-F5.3-2H3:63A DC breaker

③ AC Breaker for backup load port
RW-F5.3-1H3:63A DC breaker
RW-F5.3-2H3:63A DC breaker

Inverter

G-start/G-valve(5,6/7,8): dry contact signal for startup the diesel generator.
When the "GEN signal" is active, the open contact (G-start/G-valve) will switch on (no voltage output). If the "Signal ISLAND MODE" is ticked, the G-valve port will be the dry contact signal for startup the diesel generator. If "Signal ISLAND MODE" is not ticked, the G-start port will be the dry contact signal for startup the diesel generator.

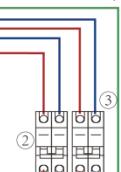

coil — X — open contact

relay

G start/valve

G-start/G-valve

(diesel generator startup signal)


Ground

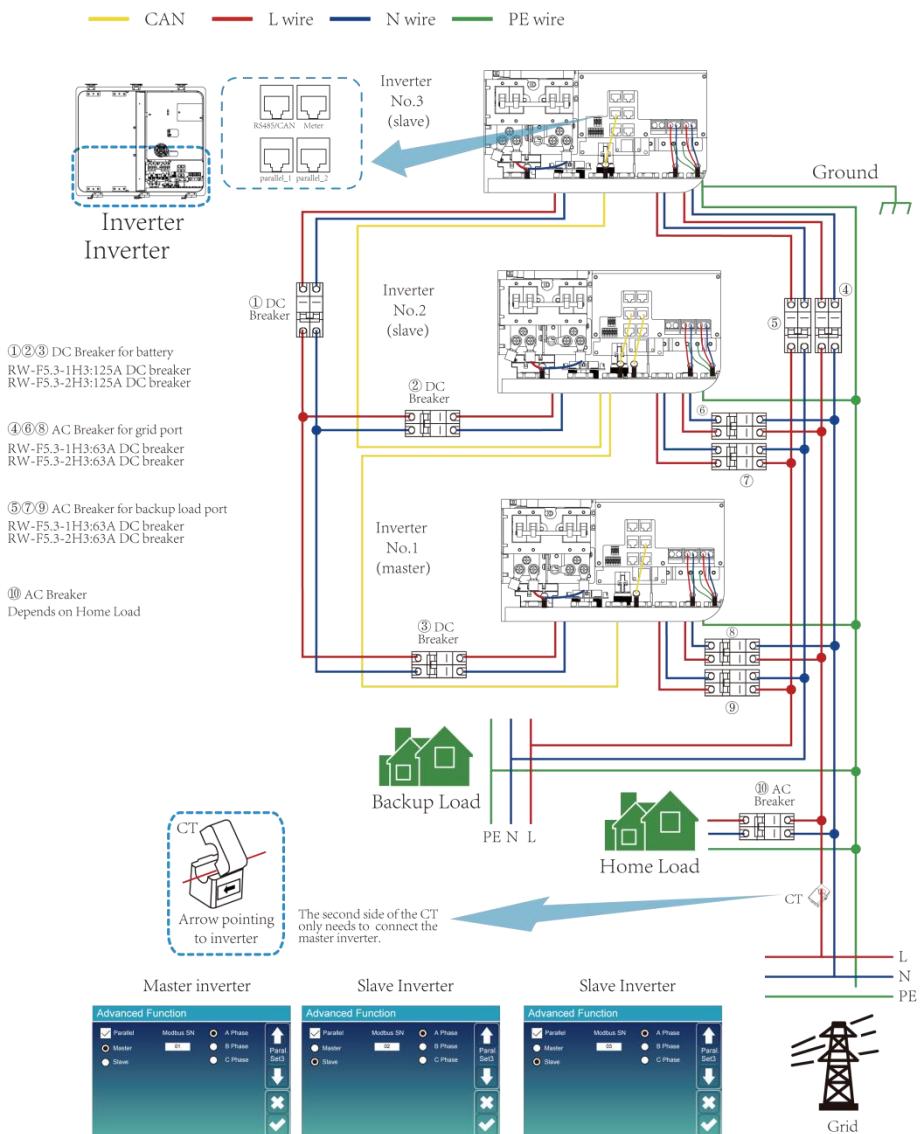
Remotely control signal line

Generator

PE N L

②

③


③

L
N
PE

Backup Load

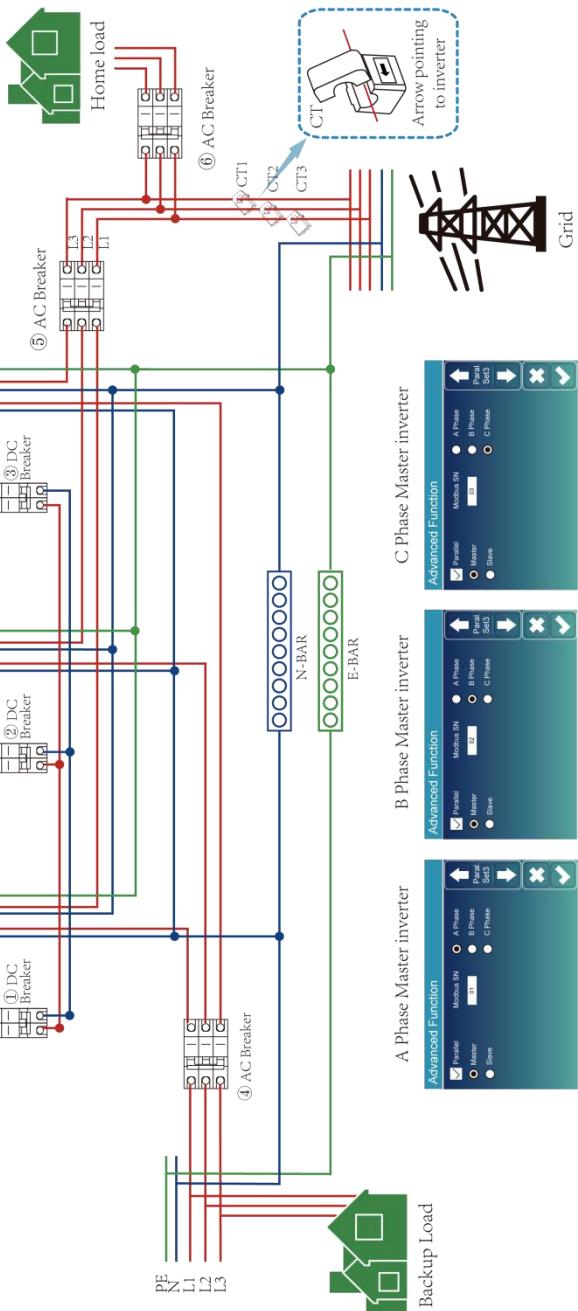
9.4 Single Phase Parallel Connection Diagram

9.5 Three Phase Parallel Inverter

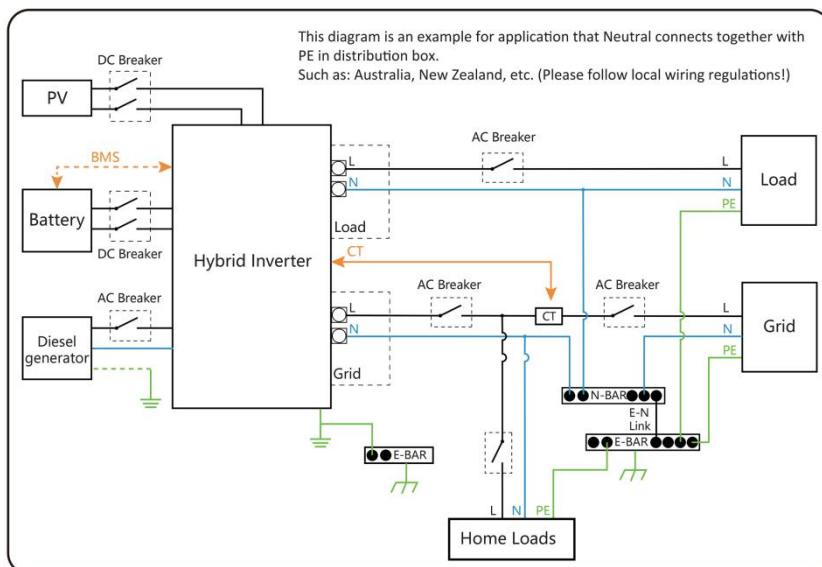
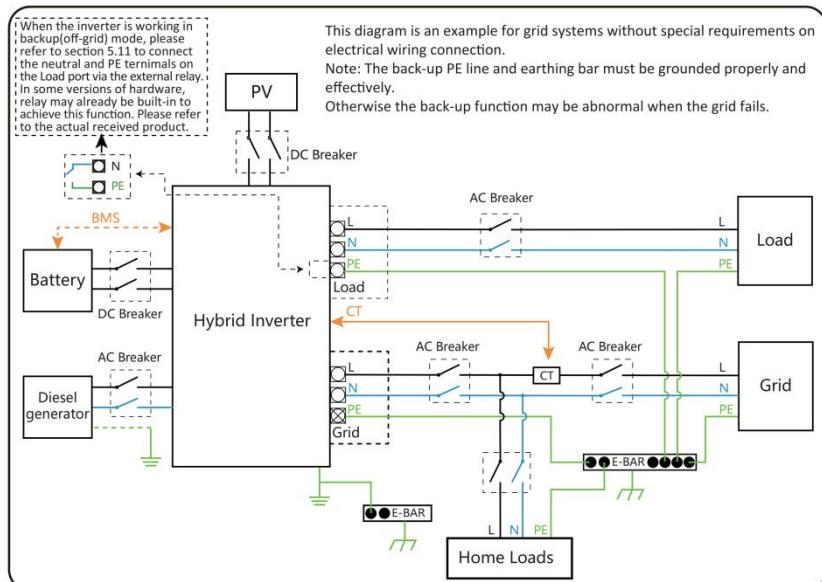
①②③ DC Breaker for battery

RW-F5.3-1H3:125A DC breaker
RW-F5.3-2H3:125A DC breaker

AC Breaker for grid port


RW-F5.3-1H3:125A DC breaker
RW-F5.3-2H3:125A DC breaker

AC Breaker for backup load



RW-F5.3-1H3:125A DC breaker
RW-F5.3-2H3:125A DC breaker

⑥ AC Breaker

Depends on Home Load

9.6 Wiring System for Inverter

10. Activation product

10.1 Precautions during Use

1. After the battery is fully discharged, it needs to be charged at once. The battery is not charged as required, resulting in loss of battery capacity or irreversible damage. If the battery is stored for a long time, it is required to be charged every six months, and the SOC should not be less than 50%.
2. Do not expose the battery to flammable or irritating chemicals or vapors.
3. Do not paint any part of the battery, including any internal or external components.
4. Do not insert any foreign matter into any part of the battery.
5. Handle or handle with care to avoid battery damage, drop, or leakage.
6. Do not place batteries near heat sources or fire sources, such as smoke, candies, heaters, or other heating devices. Overheat may damage the equipment or cause a fire.

- A. Hang the battery on the wall as shown on 8.2 .
- B. Connect the wires according to the picture on 8.
- C. Unscrew the fixing buckle screw, open the buckle, and Open the cover cover,open the Air Switch first, and Close the lid , and Buckle up the buckle , and Tighten the fixing buckle screw , and then turn on the Power Button to prevent battery short-circuit protection failure caused by the pre-charge function.

Start the Battery:

After installation, wiring, and configuration are completed, you must check all the connection . When the connections are correctly, and then press power button to activate the battery. The green working light on of the integrated machine flashes, the display screen lights up , indicating that the battery system is normal.

10.2 Monitoring Platform

This series All-in-One ESS has built-in WIFI modular which is able to connect router directly. For WIFI configuration, please check the manual of “Built-in WIFI modular All-in-One ESS WIFI configuration Manual”.

Web monitoring address: <https://pro.solarmanpv.com>; (for Solarman distributor account)

<https://home.solarmanpv.com> (for Solarman end user account)

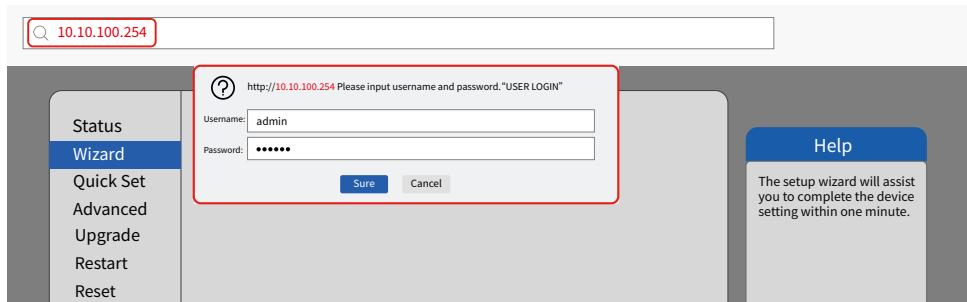
For mobile phone monitoring system, scan the QR code to download the APP.

Also you can find it by searching “solarman business” in App store or Google Play store, and this App is for distributor/installer.

Find it by searching “solarman smart” in App store or Google Play store and choose “solarman smart”, this app is for plant owner.

SOLARMAN Smart
for end user

SOLARMAN Business
for distributor/installer


10.3 How to connect the All-in-One ESS to the router via web

1. Turn on the wireless network of your PC or smartphone.
2. The default password of the AP network is 12345678 if there's no nameplate that includes PWD:XXXXXXX on the inverter body. If there's nameplate that includes PWD:XXXXXXX on the inverter body then the AP network password is the "XXXXX XXX": for example, the default password of AP network is "5c4db4d8" of the inverter SN:2302202012.

Also, the default password can be changed. If forgetting the modified password, please contact service@deye.com.cn for help.

3. Open a browser and enter **10.10.100.254**. Both username and password are "admin". (Recommended browser: IE 8+, Chrome 15+, Firefox 10+).

4. Browser jumps to "Status" page, the basic information is listed there.

Status

- Wizard
- Quick Set
- Advanced
- Upgrade
- Restart
- Reset

Inverter information

Inverter serial number	---
Firmware version(main)	---
Firmware version(slave)	---
Inverter model	---
Rated power	--- W
Current power	--- W
Yield today	--- kWh
Current power	--- kWh
Alerts	---
Last updated	---

Device information

Device serial number	3907047089
Firmware version	LSW3_14_FFFF_1.0.23
Wireless AP mode	Enable
SSID	AP_1704013242
IP address	10.10.100.254
MAC address	8C:D8:B3:71:8D:B0
Wireless STA mode	Disable
Router SSID	
Signal Quality	
IP address	
MAC address	

Remote server information

Remote server A	Not connected
Remote server B	Not connected

Help

The device can be used as a wireless access point(AP mode) to facilitate users to configure the device, or it can also be used as a wireless information terminal(STA mode) to connect the remote server via wireless router.

Status of remote server

- Not connected: Connection to server failed last time. If under such status, please check the issues as follows:
 - (1)check the device information to see whether IP address is obtained or not;
 - (2)check if the router is connected to internet or not;
 - (3)check if a firewall is set on the router or not;
- Connected: connection to server successful last time;
- Unknown: No connection to server. Please check again in 5 minutes.

5. Turn to "Wizard" page, click "Refresh" to search the wireless network. Select the target network and click "Next".

Wizard

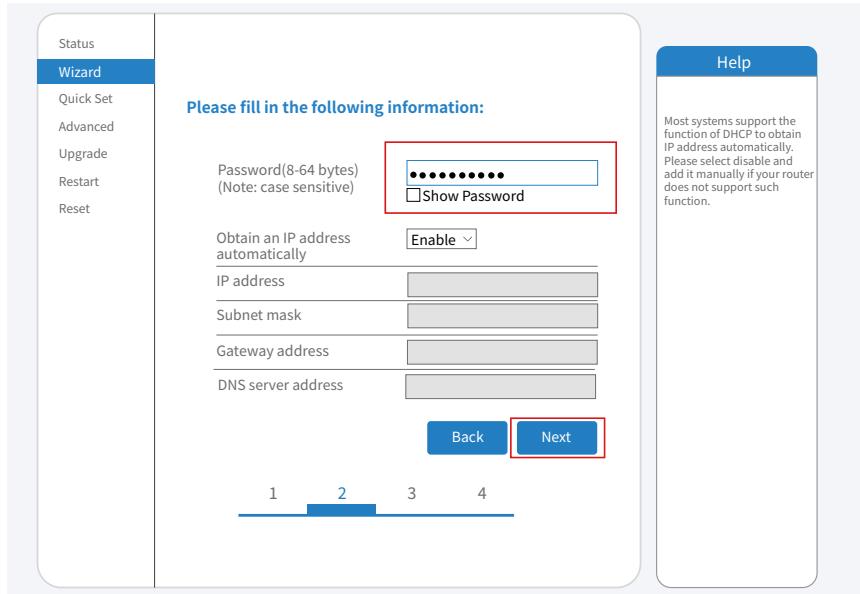
- Quick Set
- Advanced
- Upgrade
- Restart
- Reset

Please select your current wireless network:

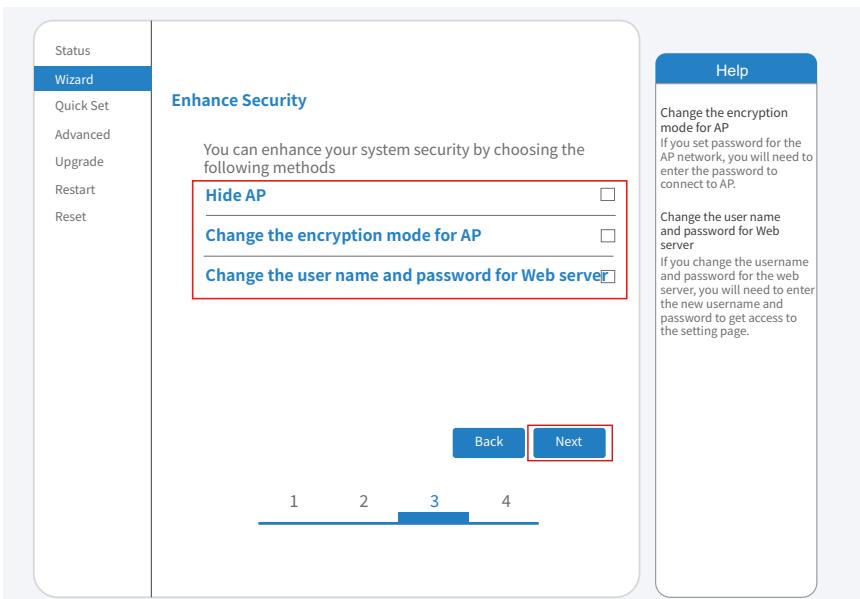
<input type="radio"/> IE-2.4G-TEST	54:A7:3:70:99:13	82	1
<input type="radio"/> AP_1753738492	0:BE:D5:20:B8:2C	80	1
<input type="radio"/> IGEN_office_2.4G	30:EA:E7:36:B3:36	78	2
<input type="radio"/> IGENTEST	0:BE:D5:20:B8:2C	76	1
<input type="radio"/> IGEN_office_2.4G	E8:65:D4:F2:15:B8	74	6
<input type="radio"/> IGEN_office_2.4G	90:5D:7C:97:95:29	74	1
<input type="radio"/> IGEN_office_2.4G	90:5D:7C:97:95:27	72	1
<input type="radio"/> AP_1719065936	90:5D:7C:97:95:27	72	1
<input type="radio"/> IGEN_office_2.4G	90:5D:7C:97:C9:E3	70	1
<input type="radio"/> TE8R+*?*;	4A:E:EC:9E:C3:3E	70	11
<input type="radio"/> IGEN_office_2.4G	0:BE:D5:20:B7:EE	66	11
<input type="radio"/> AD_517175E6E5	0:0:D0:D0:D0:D0	14	11

* Note: When RSSI of the selected WiFi network is lower than 15%, the connection may be unstable, please select other available network or shorten the distance between the device and router.

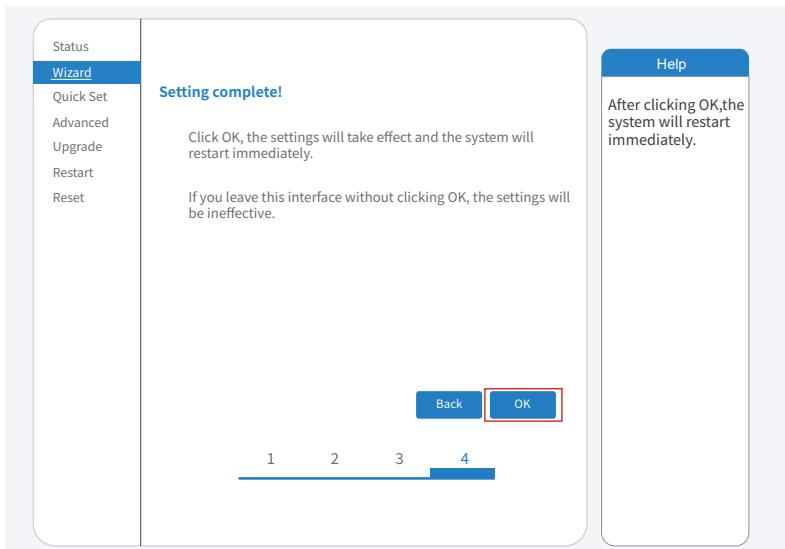
Add wireless network manually:


Network name (SSID) (Note:Case sensitive)	IE-2.4G-TEST
Encryption method	WPA2PSK
Encryption algorithm	AES

1 2 3 4


Help

The setup wizard will assist you to complete the device setting within one minute.


6. Enter the password and click Next

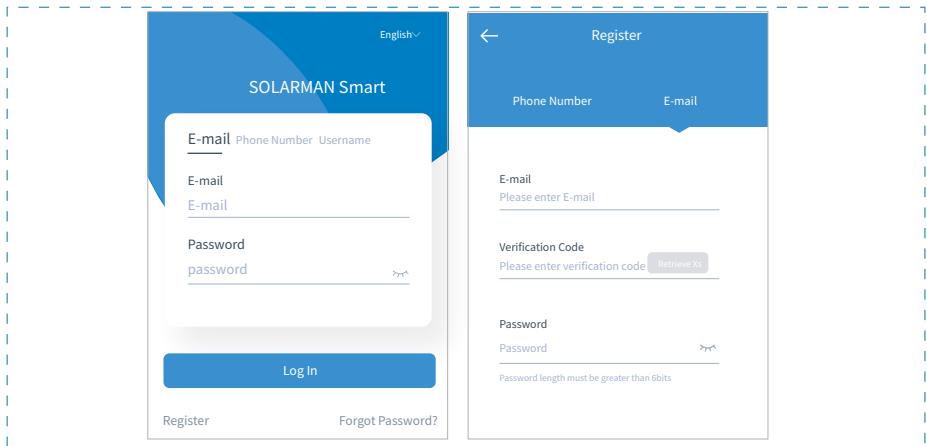
7. Users can select any options below to enhance the security and click Next.

8. If the setup is successful, the following page will pop up and click OK to reboot the Single-phase inverter.

9. Connect to loggear AP network again, then log in to 10.10.100.254 by Browser, and check the system info of "Status" page. After the network setting is done, the remote server A or B should be "connected".

Wireless STA mode	Enable
Router SSID	IE-2.4G-TEST
Signal Quality	100%
IP address	172.16.30.247
MAC address	98:D8:63:71:8D:B0

Remote server A	connected
Remote server B	Not connected


10. When it shows "connected" which means this Single-phase inverter has connected solarman platform successfully. Generally speaking, it will be online after 10-15min after configuration successfully at the first time.

10.4 How to connect in APP

1. Registration

Open the app of SOLARMAN Smart and register an account.

Click "Register" and create your account here.

SOLARMAN Smart

English

E-mail Phone Number Username

E-mail
E-mail

Password
password

Log In

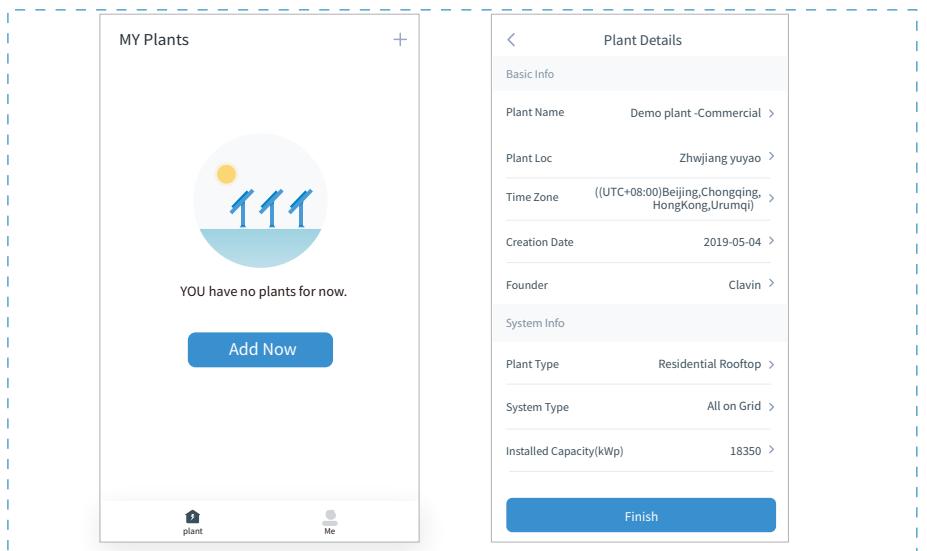
Register Forgot Password?

Register

Phone Number E-mail

E-mail
Please enter E-mail

Verification Code
Please enter verification code [Retrieve Xs](#)


Password
Password

Password length must be greater than 6bits

2. Create a Plant

Click "Add Now" to create your plant.

Please fill in plant basic info and other info here.

MY Plants

+

YOU have no plants for now.

Add Now

Plant Details

Basic Info

Plant Name Demo plant -Commercial >

Plant Loc Zhejiang yuyao >

Time Zone ((UTC+08:00)Beijing,Chongqing, HongKong,Urumqi) >

Creation Date 2019-05-04 >

Founder Clavin >

System Info

Plant Type Residential Rooftop >

System Type All on Grid >

Installed Capacity(kWp) 18350 >

Finish

3. Add a Logger

Optional 1: Enter the logger SN manually.

Optional 2: Click the icon in the right and scan the QR code to enter logger SN.

You can find logger SN on the carton packaging or on the logger body.

The image shows a split-screen view. On the left is a 'MY Plants' dashboard for a 'Demo plant-Micro inverter' (shared). It displays current production power (88.00W) and production today (45.38MWh). On the right is a 'Add a Logger' dialog box. It prompts the user to enter the logger SN, with a note that the system will calculate plant data according to the logger. A QR code scanner icon is present. Below the input field is a message 'Cannot Find SN/Barcode?'. At the bottom is a blue 'Start to configure' button.

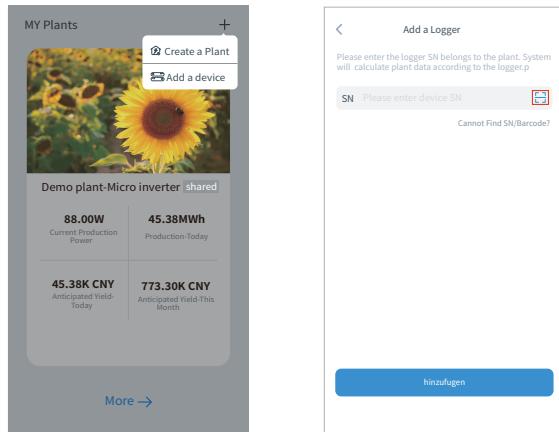
4. Network Configuration

After the logger is added, please configure the network to ensure normal operation.

Go to "Plant Details"- "Device List", find the target SN and click "Device Networking".

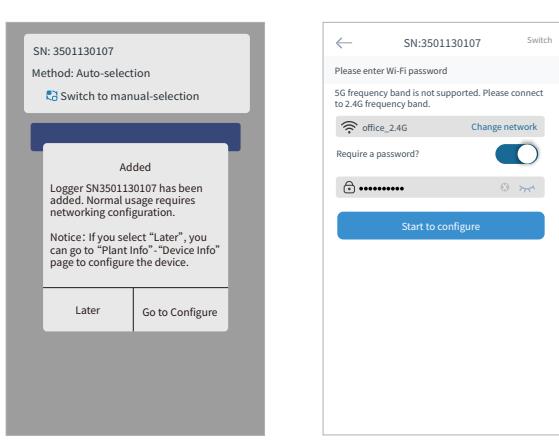
If showing "online" which means the datalogger of the inverter connects the solarman platform successfully. Then you will be able to check the plant info on the platform.

The image shows a 'Device Details' page for an 'Inverter'. Under the 'Logger' section, there is a table with two rows. The first row shows a logger with SN:123341245 and a 'Normal' status, with a 'Device Networking' button. The second row shows a logger with SN:136689995 and an 'Offline' status, with a 'Device Networking' button. The 'Logger' section is highlighted with a red box. The 'Device Networking' button for the first logger is also highlighted with a red box.

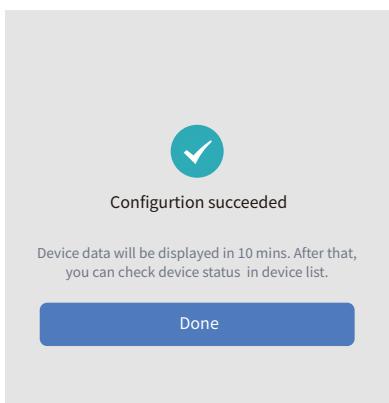
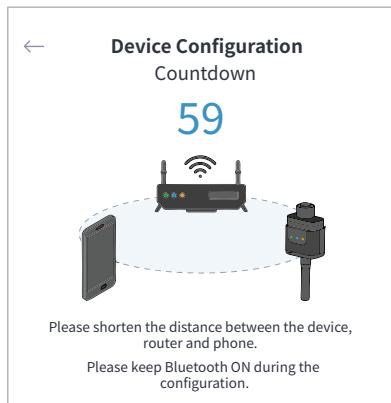

10.5 USER MANUAL for SOLARMAN Smart APP

1.Add a Logger

Method 1: Enter logger SN manually.


Method 2: Click the icon in the right and scan to enter logger SN

You can find logger SN in the external packaging or on the logger body.

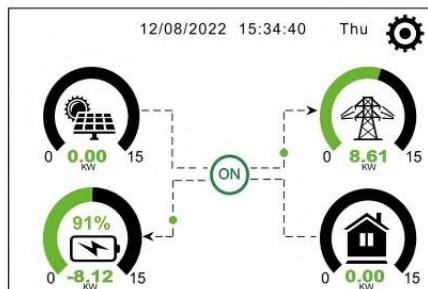
2.Network Configuration

Step 1: Click “Go to Configure” to set the network. (Please make sure Bluetooth and WiFi are ON.)

Step 2: Please wait for a few minute. Then click "Done" and view plant data.

⚠ NOTE

5G WiFi is not supported .


⚠ REMARQUE

Le Wi-Fi 5G n' est pas pris en charge.

11.LCD Display Icons

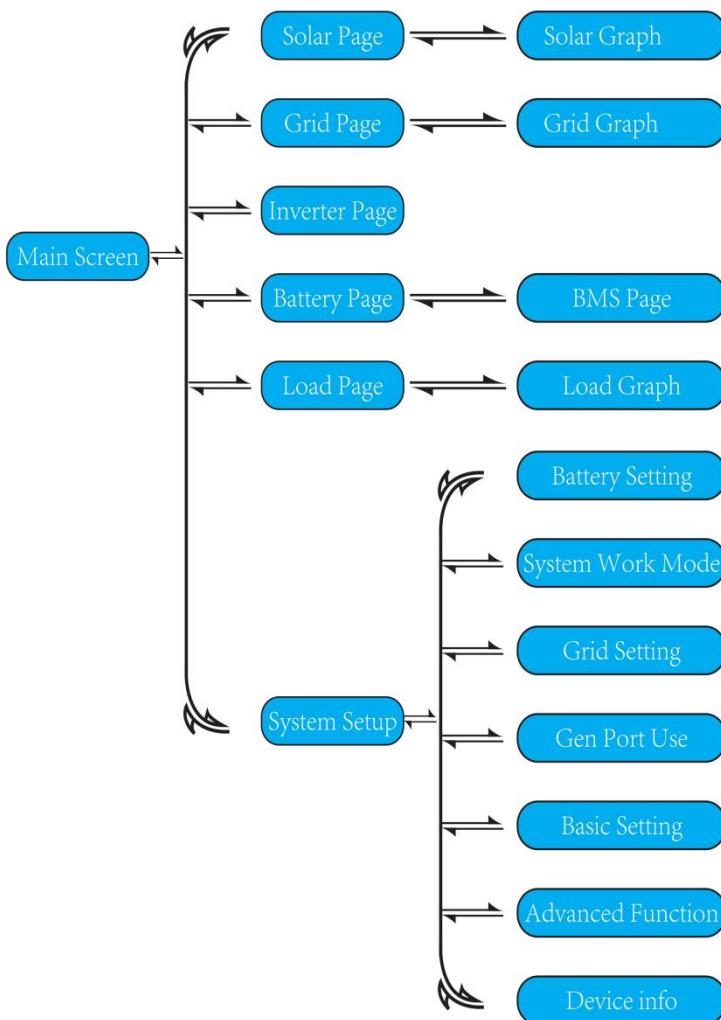
11.1 Main Screen

The LCD is touchscreen, below screen shows the overall information of the inverter.

1.The icon in the center of the home screen indicates that the system is Normal operation. If it turns into "comm./F01~F64" , it means the inverter has communication errors or other errors, the error message will display under this icon(F01-F64 errors, detail error info can be viewed in the System Alarms menu).

2.At the top of the screen is the time.

3.System Setup Icon, Press this set button, you can enter into the system setup screen which including Basic Setup , Battery Setup, Grid Setup, System Work Mode , Generator port use, Advanced function and Li-Batt info.


4.The main screen showing the info including Solar, Grid, Load and Battery. Its also displaying the energy flow direction by arrow. When the power is approximate to high level, the color on the panels will changing from green to red so system info showing vividly on the main screen.

· PV power and Load power always keep positive.

· Grid power negative means sell to grid, positive means get from grid.

· Battery power negative means charge, positive means discharge.

11.1.1 LCD Operation Flow Chart

11.2 Solar Power Curve

This is Solar Panel detail page.

① Solar Panel Generation.

② **Grid Tie Power:** when there's a string inverter AC couple at the grid or load side of hybrid inverter and there's a meter installed for the string inverter, then the hybrid inverter LCD will show the string inverter output power on its PV icon. Please make sure the meter can communicate with the hybrid inverter successfully.

③ Voltage, Current, Power for each MPPT.

④ Solar Panel energy for Day and Total.
Press the "Energy" button will enter into the power curve page.

This is Inverter detail page.

① Inverter Generation.

② 0.0Hz: frequency after DC/AC.
Voltage, Current, Power for each Phase.

③ *DC-T: mean DC-DC temperature,

AC-T: mean Heat-sink temperature.

*Note: this part info is not available for some LCD FW.

This is Load detail page.

① Load Power.

② Voltage, Power for each Phase.

③ Daily and total Load consumption .

When you check "Selling First" or "Zero export to Load" on system work mode page, the information on this page is about backup load which connect on Load port of hybrid inverter.

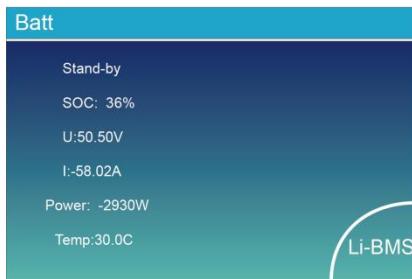
When you check "Zero export to CT" on system work mode page, the information on this page is including backup load and home load.

Press the "Energy" button will enter into the power curve page.

This is Grid detail page.

① Status, Power, Frequency.

② L: Voltage for each Phase


CT: Power detected by the external current sensors

LD: Power detected using internal sensors on AC grid in/out breaker

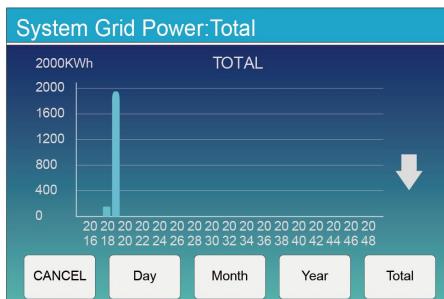
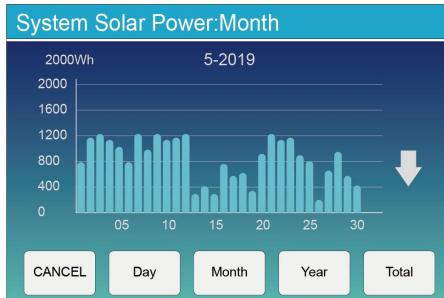
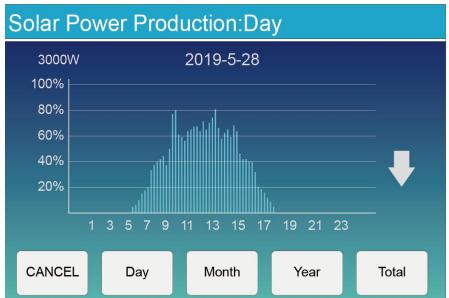
③ BUY: Energy from Grid to Inverter,

SELL: Energy from Inverter to grid.

Press the "Energy" button will enter into the power curve page.

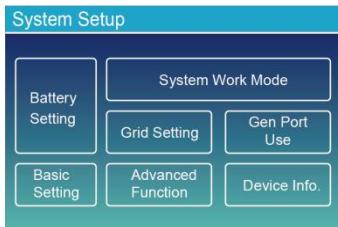
This is Battery detail page.

if you use Lithium Battery, you can enter BMS page.




Mean Voltage:50.34V	Charging Voltage :53.2V
Total Current:55.00A	Discharging Voltage :47.0V
Mean Temp :23.5C	Charging current :50A
Total SOC :38%	Discharging current :25A
Dump Energy:57Ah	
Request Force Charge	
	Sum Data
	Details Data

Request Force Charge: It indicates the BMS requests hybrid inverter to charge the battery actively.

Li-BMS


	Volt	Curr	Term	SOC	Energy	Charge	Fault	
1	50.38V	19.70A	30.8C	52.0%	26.5Ah	0.00A	0.0A	0000
2	50.33V	19.10A	31.0C	51.0%	25.5Ah	53.2V	25.0A	0000
3	50.30V	18.90A	30.2C	12.0%	0.0Ah	53.2V	25.0A	0000
4	0.00V	0.00A	0.0C	0.0%	0.0Ah	0.0V	0.0A	0000
5	0.00V	0.00A	0.0C	0.0%	0.0Ah	0.0V	0.0A	0000
6	0.00V	0.00A	0.0C	0.0%	0.0Ah	0.0V	0.0A	0000
7	0.00V	0.00A	0.0C	0.0%	0.0Ah	0.0V	0.0A	0000
8	0.00V	0.00A	0.0C	0.0%	0.0Ah	0.0V	0.0A	0000
9	0.00V	0.00A	0.0C	0.0%	0.0Ah	0.0V	0.0A	0000
10	0.00V	0.00A	0.0C	0.0%	0.0Ah	0.0V	0.0A	0000
11	0.00V	0.00A	0.0C	0.0%	0.0Ah	0.0V	0.0A	0000
12	0.00V	0.00A	0.0C	0.0%	0.0Ah	0.0V	0.0A	0000
13	0.00V	0.00A	0.0C	0.0%	0.0Ah	0.0V	0.0A	0000
14	0.00V	0.00A	0.0C	0.0%	0.0Ah	0.0V	0.0A	0000
15	0.00V	0.00A	0.0C	0.0%	0.0Ah	0.0V	0.0A	0000

11.3 Curve Page-Solar & Load & Grid

Solar power curve for daily, monthly, yearly and total can be roughly checked on the LCD, for more accuracy power generation, pls check on the monitoring system. Click the up and down arrow to check power curve of different period.

11.4 System Setup Menu

This is System Setup page.

11.5 Basic Setup Menu

Factory Reset: Reset all parameters of the inverter.
Lock out all changes: Enable this menu for setting parameters that require locking and cannot be set up. Before performing a successful factory reset and locking the systems, to keep all changes you need to type in a password to enable the setting.
The password for factory settings is 9999 and for lock out is 7777.

Factory Reset Password: 9999
Lock out all changes Password: 7777
System selfcheck: After ticking this item, it needs input the password.
The default password is 1234

11.6 Battery Setup Menu

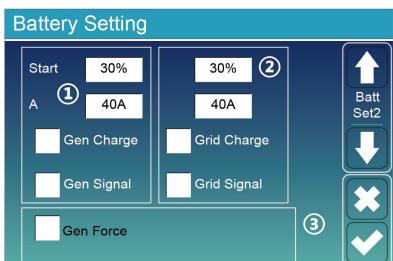
Battery capacity: it tells Deye hybrid inverter to know your battery bank size.

Use Batt V: Use Battery Voltage for all the settings (V).

Use Batt %: Use Battery SOC for all the settings (%).

Max. A charge/discharge: Max battery charge/discharge current(0-140A for 3KW-24 model),0-70A for 3KW model,0-90A for 3.6KW model,0-120A for 5KW model, 0-135A for 6KW model).

For AGM and Flooded, we recommend Ah battery size x 20% = Charge/Discharge amps.


. For Lithium, we recommend Ah battery size x 50% = Charge/Discharge amps.

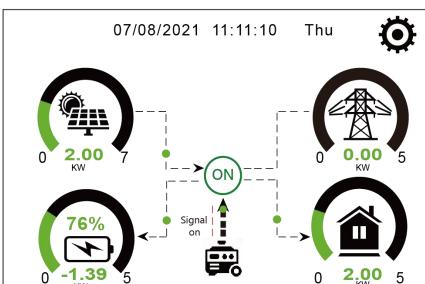
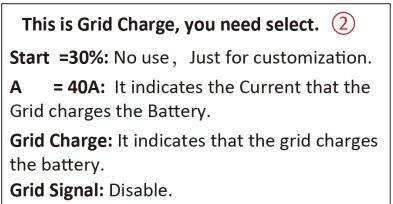
. For Gel, follow manufacturer' s instructions.

No Batt: tick this item if no battery is connected to the system.

Active battery: This feature will help recover a battery that is over discharged by slowly charging from the solar array or grid.

Disable Float Charge: For the lithium battery with BMS communication, the inverter will keep the charging voltage at the current voltage when the BMS charging current requested is 0. It is used to help prevent battery from being overcharged.

This is Battery Setup page. ① ③



Start =30%: Percent S.O.C at 30% system will AutoStart a connected generator to charge the battery bank.

A = 40A: Charge rate of 40A from the attached generator in Amps.

Gen Charge: uses the gen input of the system to charge battery bank from an attached generator.

Gen Signal: Normally open relay that closes when the Gen Start signal state is active.

Gen Force: When the generator is connected, it is forced to start the generator without meeting other conditions.

This page tells the PV and diesel generator power the load and battery.

Generator

Power: 1392W

Today=0.0 KWH

Total =2.20 KWH

L1: 228V

Freq:50.0Hz

This page tells generator output voltage, frequency, power. And, how much energy is used from generator.

Battery Setting

Lithium Mode	00
Shutdown	10%
Low Batt	20%
Restart	40%

Lithium Mode: This is BMS protocol. Please reference the document (Approved Battery).

Shutdown 10%: It indicates the inverter will shutdown if the SOC below this value.

Low Batt 20%: It indicates the inverter will alarm if the SOC below this value.

Restart 40%: Battery voltage at 40% AC output will resume.

Battery Setting

Float V	① 53.6V
Absorption V	57.6V
Equalization V	57.6V
Equalization Days	30 days
Equalization Hours	3.0 hours

Shutdown	③ 20%
Low Batt	35%
Restart	50%
TEMPCO(mV/C/Cell)	
② -5	
Batt Resistance	25mOhms

There are 3 stages of charging the Battery .

①

This is for professional installers, you can keep it if you do not know.

②

Shutdown 20%: The inverter will shutdown if the SOC below this value.

③

Low Batt 35%: The inverter will alarm if the SOC below this value.

④

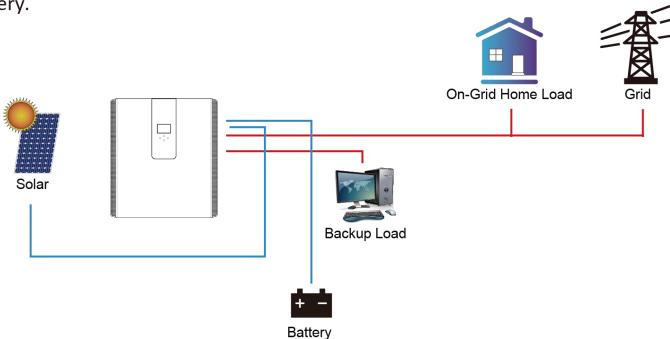
Restart 50%: Battery SOC at 50% AC output will resume.

Recommended battery settings

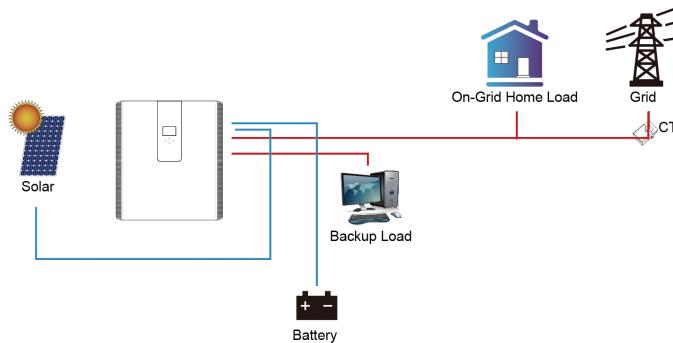
Battery Type	Absorption Stage	Float Stage	Equalization Voltage (every 30 days 3hr)
AGM (or PCC)	14.2V (57.6V)	13.4V (53.6V)	14.2V (57.6V)
Gel	14.1V (56.4V)	13.5V (54.0V)	
Wet	14.7V (59.0V)	13.7V (55.0V)	14.7V (59.0V)
Lithium	Follow its BMS voltage parameters		

11.7 System Work Mode Setup Menu

Work Mode


Selling First: This Mode allows hybrid inverter to sell back any excess power produced by the solar panels to the grid. If time of use is active, the battery energy also can be sold into grid.

The PV energy will be used to power the load and charge the battery and then excess energy will flow to grid.


Power source priority for the load is as follows:

1. Solar Panels.
2. Grid.
3. Batteries (until programmable % discharge is reached).

Zero Export To Load: Hybrid inverter will only provide power to the backup load connected. The hybrid inverter will neither provide power to the home load nor sell power to grid. The built-in CT will detect power flowing back to the grid and will reduce the power of the inverter only to supply the local load and charge the battery.

Zero Export To CT: Hybrid inverter will not only provide power to the backup load connected but also give power to the home load connected. If PV power and battery power is insufficient, it will take grid energy as supplement. The hybrid inverter will not sell power to grid. In this mode, a CT is needed. The installation method of the CT please refer to chapter 3.6 CT Connection. The external CT will detect power flowing back to the grid and will reduce the power of the inverter only to supply the local load, charge battery and home load.

Solar Sell: "Solar sell" is for Zero export to load or Zero export to CT: when this item is active, the surplus energy can be sold back to grid. When it is active, PV Power source priority usage is as follows: load consumption and charge battery and feed into grid.

Max. sell power: Allowed the maximum output power to flow to grid.

Zero-export Power: for zero-export mode, it tells the grid output power. Recommend to set it as 20-100W to ensure the hybrid inverter won't feed power to grid.

Energy Pattern: PV Power source priority.

Batt First: PV power is firstly used to charge the battery and then used to power the load. If PV power is insufficient, grid will make supplement for battery and load simultaneously.

Load First: PV power is firstly used to power the load and then used to charge the battery. If PV power is insufficient, grid will make supplement for battery and load simultaneously.

Max Solar Power: allowed the maximum DC input power.

Grid Peak-shaving: when it is active, grid output power will be limited within the set value. If the load power exceeds the allowed value, it will take PV energy and battery as supplement. If still can't meet the load requirement, grid power will increase to meet the load needs.

System Work Mode

Grid Charge	Gen	Time Of Use		
		Time	Power	Batt
		01:00	5:00	5000 49.0V
		05:00	9:00	5000 50.2V
✓		09:00	13:00	5000 50.9V
✓		13:00	17:00	5000 51.4V
✓		17:00	21:00	5000 47.1V
✓		21:00	01:00	5000 49.0V

Time of use: it is used to program when to use grid or generator to charge the battery, and when to discharge the battery to power the load. Only tick "Time Of Use" then the follow items (Grid, charge, time, power etc.) will take effect.

Note: when in selling first mode and click time of use, the battery power can be sold into grid.

Grid charge: utilize grid to charge the battery in a time period.

Gen charge: utilize diesel generator to charge the battery in a time period.

Time: real time, range of 01:00-24:00.

Power: Max. discharge power of battery allowed.

Batt(V or SOC %): battery SOC % or voltage at when the action is to happen.

For example:

During 01:00-05:00, when battery SOC is lower than 80%, it will use grid to charge the battery until battery SOC reaches 80%.

During 05:00-08:00 and 08:00-10:00, when battery SOC is higher than 40%, hybrid inverter will discharge the battery until the SOC reaches 40%.

During 10:00-15:00, when battery SOC is higher than 80%, hybrid inverter will discharge the battery until the SOC reaches 80%.

During 15:00-18:00, when battery SOC is higher than 40%, hybrid inverter will discharge the battery until the SOC reaches 40%.

During 18:00-01:00, when battery SOC is higher than 35%, hybrid inverter will discharge the battery until the SOC reaches 35%.

System Work Mode

Grid Charge	Gen	Time Of Use		
		Time	Power	Batt
✓		01:00	5:00	5000 80%
		05:00	8:00	5000 40%
		08:00	10:00	5000 40%
		10:00	15:00	5000 80%
		15:00	18:00	5000 40%
		18:00	01:00	5000 35%

It allows users to choose which day to execute the setting of "Time of Use".

For example, the inverter will execute the time of use page on Mon/Tue/Wed/Thu/Fri/Sat only.

System Work Mode

Mon	Tue	Wed	Thu	Fri	Sat	Sun
✓	✓	✓	✓	✓	✓	

11.8 Grid Setup Menu

Grid Setting

<input type="checkbox"/> Unlock Grid Setting	<input type="checkbox"/> Grid Mode	General Standard	0/16
Grid Frequency	<input checked="" type="radio"/> 50HZ	INV Output Voltage	240V 220V 230V 200V
Grid Type	<input checked="" type="radio"/> Single Phase	<input type="radio"/> 120/240V Split Phase	<input type="radio"/> 120/208V 3 Phase

 Grid Set1
 Grid Set1
 Grid Set1
 Grid Set1

Unlock Grid Setting: before changing the grid parameters, please enable this with password of 7777. Then it is allowed to change the grid parameters.

Grid Mode: General Standard、UL1741 & IEEE1547、CPUC RULE21、SRD-UL-1741、CEI 0-21、EN50549_CZ、Australia_A、Australia_B、Australia_C、NewZealand、VDE4105、OVE_Directive_R25、EN50549_CZ_PPDS_L16A、NRS097、G98/G99、G98/G99_NI、ESB Networks(Ireland). Please follow the local grid code and then choose the corresponding grid standard.

Grid Setting/Connect

Normal connect	Normal Ramp rate	60s	
Low frequency	48.00Hz	High frequency	51.50Hz
Low voltage	185.0V	High voltage	265.0V
Reconnect after trip	Reconnect Ramp rate	60s	
Low frequency	48.20Hz	High frequency	51.30Hz
Low voltage	187.0V	High voltage	263.0V
Reconnection Time	60s	PF	1.000

 Grid Set2
 Grid Set2
 Grid Set2
 Grid Set2

Normal connect: The allowed grid voltage/frequency range when the inverter first time connect to the grid.

Normal Ramp rate: It is the startup power ramp.

Reconnect after trip: The allowed grid voltage/frequency range for the inverter connects the grid after the inverter trip from the grid.

Reconnect Ramp rate: It is the reconnection power ramp.

Reconnection time: The waiting time period for the inverter connects the grid again.

PF: Power factor which is used to adjust inverter reactive power.

Grid Setting/IP Protection

Over voltage U>(10 min. running mean)	260.0V		
HV3	265.0V	HF3	51.50Hz
HV2	265.0V	-	0.10s (2)
HV1	265.0V	-	0.10s
LV1	185.0V	-	0.10s
LV2	185.0V	-	0.10s
LV3	185.0V	-	0.10s
HF2	51.50Hz	-	0.10s
HF1	51.50Hz	-	0.10s
LF1	48.00Hz	-	0.10s
LF2	48.00Hz	-	0.10s
LF3	48.00Hz	-	0.10s

 Grid Set3
 Grid Set3
 Grid Set3
 Grid Set3

HV1: Level 1 overvoltage protection point;

HV2: Level 2 overvoltage protection point; (2) 0.10s—Trip time.

HV3: Level 3 overvoltage protection point.

LV1: Level 1 undervoltage protection point;

LV2: Level 2 undervoltage protection point;

LV3: Level 3 undervoltage protection point.

HF1: Level 1 over frequency protection point;

HF2: Level 2 over frequency protection point;

HF3: Level 3 over frequency protection point.

LF1: Level 1 under frequency protection point;

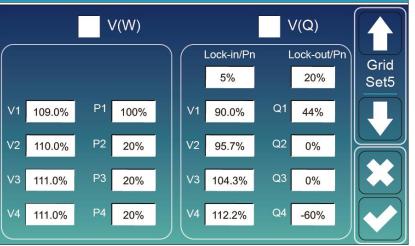
LF2: Level 2 under frequency protection point;

LF3: Level 3 under frequency protection point.

Grid Setting/F(W)

<input type="checkbox"/> F(W)			
Over frequency	Droop f	40%PE/Hz	
Start freq f	50.20Hz	Stop freq f	50.20Hz
Start delay f	0.00s	Stop delay f	0.00s
Under frequency			
Under frequency	Droop f	40%PE/Hz	
Start freq f	49.80Hz	Stop freq f	49.80Hz
Start delay f	0.00s	Stop delay f	0.00s

 Grid Set4
 Grid Set4
 Grid Set4
 Grid Set4


FW: this series inverter is able to adjust inverter output power according to grid frequency.

Droop f: percentage of nominal power per Hz

For example, “Start freq f>50.2Hz, Stop freq f<50.2, Droop f=40%PE/Hz” when the grid frequency reaches 50.2Hz, the inverter will decrease its active power at Droop f of 40%. And then when grid system frequency is less than 50.2Hz, the inverter will stop decreasing output power.

For the detailed setup values, please follow the local grid code.

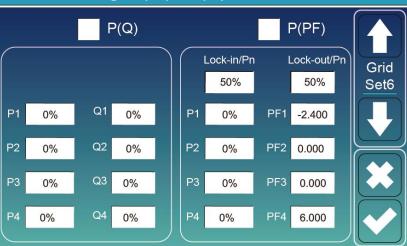
Grid Setting/V(W) V(Q)

V(W): It is used to adjust the inverter active power according to the set grid voltage.

V(Q): It is used to adjust the inverter reactive power according to the set grid voltage.

This function is used to adjust inverter output power (active power and reactive power) when grid voltage changes.

Lock-in/Pn 5%: When the inverter active power is less than 5% rated power, the VQ mode will not take effect.


Lock-out/Pn 20%: If the inverter active power is increasing from 5% to 20% rated power, the VQ mode will take effect again.

For example: V2=110%, P2=20%. When the grid voltage reaches the 110% times of rated grid voltage, inverter output power will reduce its active output power to 20% rated power.

For example: V1=90%, Q1=44%. When the grid voltage reaches the 90% times of rated grid voltage, inverter output power will output 44% reactive output power.

For the detailed setup values, please follow the local grid code.

Grid Setting/P(Q) P(F)

P(Q): It is used to adjust the inverter reactive power according to the set active power.

P(PF): It is used to adjust the inverter PF according to the set active power.

For the detailed setup values, please follow the local grid code.

Lock-in/Pn 50%: When the inverter output active power is less than 50% rated power, it won't enter the P(PF) mode.

Lock-out/Pn 50%: When the inverter output active power is higher than 50% rated power, it will enter the P(PF) mode.

Note : only when the grid voltage is equal to or higher than 1.05times of rated grid voltage, then the P(PF) mode will take effect.

Grid Setting/LVRT

Reserved: This function is reserved. It is not recommended.

11.9 The Method of CEI-021 Standard Self-Check

Firstly, tick the “CEI-021” and “Single phase/50Hz” on the grid setting menu.

Secondly, tick “System selfcheck”, then it will ask you input the password, and the default password is 1234.

Note: please don't tick “CEI-021 Report”.

This “System selfcheck” program is valid only after choosing grid type as “CEI-021”.

The default password is 1234
After input the password and then tick "OK"

Inverter ID : 2012041234

Self-Test OK


8/8

Testing 59.S1...	Test 59.S1 OK!
Testing 59.S2...	Test 59.S2 OK!
Testing 27.S1...	Test 27.S1 OK!
Testing 27.S2...	Test 27.S2 OK!
Testing 81>S1...	Test 81>S1 OK!
Testing 81>S2...	Test 81>S2 OK!
Testing 81<S1...	Test 81<S1 OK!
Testing 81<S2...	Test 81<S2 OK!

During the self-test process, all the indicators will be on and the alarm keeps on.

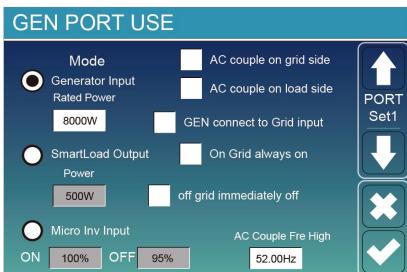
When all the test items shows OK, which means the self-test is completed successfully.

Advanced Function

then press "esc" button to quit from this page.
Tick "system selfcheck" on the Advanced function menu and tick "CEI-021 Report".

PassWord

System selfcheck: After ticking this item, it needs input the password.
The default password is 1234.
After input the password and then tick "OK"


Inverter ID : 2012041234

Self-Test Report

59.S1 threshold253V	900ms	59.S1: 228V	902ms
59.S2 threshold264.5V	200ms	59.S2: 229V	204ms
27.S1 threshold195.5V	1500ms	27.S1: 228V	1508ms
27.S2 threshold 34.5V	200ms	27.S2: 227V	205ms
81>S1 threshold 50.2Hz	100ms	81>S1: 49.9Hz	103ms
81>S2 threshold 51.5Hz	100ms	81>S2: 49.9Hz	107ms
81<S1 threshold 49.8Hz	100ms	81<S1: 50.0Hz	95ms
81<S2 threshold 47.5Hz	100ms	81<S2: 50.1Hz	97ms

This page will shows the test result of "CEI-021 self-check".

11.10 Generator Port Use Setup Menu

Generator input rated power: allowed Max. power from diesel generator.

GEN connect to grid input: connect the diesel generator to the grid input port.

Smart Load Output: This mode utilizes the Gen input connection as an output which only receives power when the battery SOC and PV power is above a user programmable threshold.

e.g. Power=500W, ON: 100%, OFF=95%: When the PV power exceeds 500W, and battery bank SOC reaches 100%, Smart Load Port will switch on automatically and power the load connected. When the battery bank SOC < 95% or PV power < 500w, the Smart Load Port will switch off automatically.

Smart Load OFF Batt

- Battery SOC at which the Smart load will switch off.

Smart Load ON Batt

- Battery SOC at which the Smart load will switch on. Also, the PV input power should exceed the setting value (Power) simultaneously and then the Smart load will switch on.

On Grid always on: When click "on Grid always on" the smart load will switch on when the grid is present.

off grid immediately off: the smart load will stop working immediately when the grid is disconnected if this item is active.

Micro Inv Input: To use the Generator input port as a micro-inverter on grid inverter input (AC coupled), this feature will also work with "Grid-Tied" inverters.

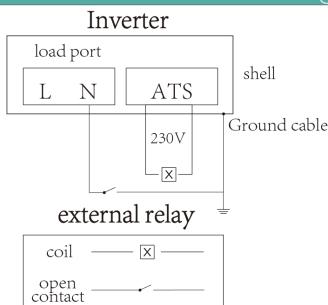
* **Micro Inv Input OFF:** when the battery SOC exceeds setting value, Microinverter or grid-tied inverter will shut down.

* **Micro Inv Input ON:** when the battery SOC is lower than setting value, Microinverter or grid-tied inverter will start to work.

AC Couple Fre High: If choosing "Micro Inv input", as the battery SOC reaches gradually setting value (OFF), During the process, the microinverter output power will decrease linear. When the battery SOC equals to the setting value (OFF), the system frequency will become the setting value (AC couple Fre high) and the Microinverter will stop working.

Stop exporting power produced by the microinverter to the grid.

* **Note:** Micro Inv Input OFF and On is valid for some certain FW version only.


* **AC couple on load side:** connecting the output of on-grid inverter at the load port of the hybrid inverter. In this situation, the hybrid inverter will not able to show the load power correctly.

* **AC couple on grid side:** this function is reserved.

* **Note:** Some firmware versions don't have this function.

11.11 Advanced Function Setup Menu

Advanced Function	
<input type="checkbox"/> Solar Arc Fault ON	Backup Delay 0ms
<input type="checkbox"/> Clear Arc_Fault	
<input type="checkbox"/> System selfcheck	<input type="checkbox"/> Gen peak-shaving
<input type="checkbox"/> DRM	CT Ratio 2000: 1
<input type="checkbox"/> Signal ISLAND MODE	
<input type="checkbox"/> BMS_Err_Stop	<input type="checkbox"/> CEI 0-21 Report

Solar Arc Fault ON: Enable the solar arc protection function. Note: This function is optional.

Clear Arc_Fault: Eliminate arc fault and reset. Note: This function is optional.

Gen Peak-shaving: Enable When the power of the generator exceeds the rated value of it, the inverter will provide the redundant part to ensure that the generator will not overload.

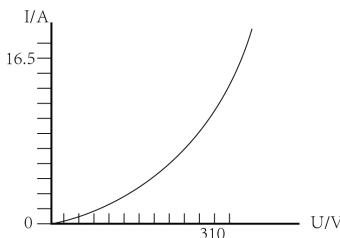
DRM: For AS4777 standard.

Backup Delay: When the grid cuts off, the inverter will give output power after the setting time.

For example, backup delay: 3ms. the inverter will give output power after 3ms when the grid cuts off.

Note: for some old FW version, the function is not available.

BMS_Err_Stop: When it is active, if the battery BMS failed to communicate with inverter, the inverter will stop working and report fault.

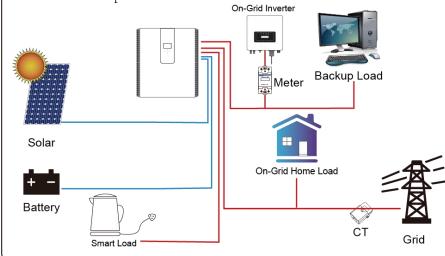

Signal ISLAND MODE: when "signal island mode" is checked and the inverter connects the grid, the ATS port voltage will be 0. When "signal island mode" is checked and the inverter disconnected from the grid, the ATS port voltage will output 230Vac voltage. With this feature and outside NO type relay, it can realize N and PE disconnection or bond.

More details, please refer to left side picture.

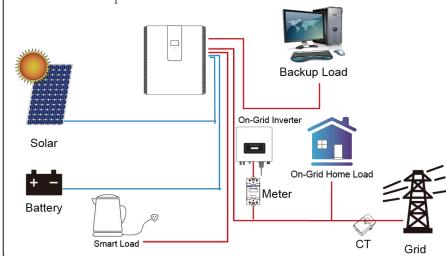
Advanced Function					
<input type="checkbox"/> DC 1 for WindTurbine	<input type="checkbox"/> DC 2 for WindTurbine				
V1	90V	0.0A	V7	210V	9.0A
V2	110V	1.5A	V8	230V	10.5A
V3	130V	3.0A	V9	250V	12.0A
V4	150V	4.5A	V10	270V	13.5A
V5	170V	6.0A	V11	290V	15.0A
V6	190V	7.5A	V12	310V	16.5A

This is for Wind Turbine

Advanced Function


<input type="checkbox"/> Parallel	Modbus SN	<input type="radio"/> A Phase	<input type="up" value=""/>
<input type="radio"/> Master	00	<input type="radio"/> B Phase	<input type="down" value=""/>
<input type="radio"/> Slave		<input type="radio"/> C Phase	<input type="cross" value=""/>
<input type="checkbox"/> Ex_Meter For CT	Meter Select	<input type="checkbox"/> Paral. Set3	<input type="check" value=""/>
<input type="checkbox"/> A Phase	CHNT-3P	<input type="checkbox"/> Grid Side INV Meter2	
<input type="checkbox"/> B Phase	CHNT-1P		
<input type="checkbox"/> C Phase	Easton-3P		
	Easton-1P		

Ex_Meter For CT: when in Three phase system with CHNT Three phase energy meter (DTSU666), click corresponding phase where hybrid inverter is connected. e.g. when the hybrid inverter output connects to A phase, please click A Phase.


Meter Select: select the corresponding meter type according to the meter installed in the system.

Grid Side INV Meter2: when there's a string inverter AC couple at the grid or load side of hybrid inverter and there's a meter installed for the string inverter, then the hybrid inverter LCD will show the string inverter output power on its PV icon. Please make sure the meter can communicate with the hybrid inverter successfully.

On-Load+AC couple

On-Grid+AC couple

Advanced Function

<input type="checkbox"/> ATS	<input type="radio"/> ON	<input type="up" value=""/>
8820W	8320W	<input type="down" value=""/>
Export power limiter	Import power limiter	<input type="cross" value=""/>
<input type="checkbox"/> Low Noise Mode		<input type="checkbox"/> Func Set4
<input type="checkbox"/> Low Power Mode<Low Batt		<input type="checkbox"/> Grid
<input type="checkbox"/> MPPT Multi-Point Scanning		<input type="checkbox"/> Smart Load

ATS: It is related with ATS port voltage. it is better in "uncheck" position.

Export power limiter: It is used to setup the allowed the maximum output power to flow to grid.

Import power limiter: when it is active, the grid output power will be limited. its priority is lower then "grid peak shaving" if the "grid peak shaving" is selected.

Low Noise Mode: In this mode, inverter will work in "low noise mode".

Low Power Mode<Low Batt: if selected and when battery SOC is less then "Low Bat" value, the self-consumption power of inverter will be from grid and battery simultaneously. If unselected, the self-consumption power of inverter will be mainly from grid.

MPPT Multi-Point Scanning: it will check whether the I/V of PV is working on its Max. power point. If not, then it will adjust I/V to the Max. power point.

11.12 Device Info Setup Menu

Device Info.

Inverter ID: 1601012001	Flash
HMI: Ver0302	MAIN:Ver 0-5213-0717
Alarms Code	Occurred
F64 Heatsink_HighTemp_Fault	2019-03-11 15:56
F64 Heatsink_HighTemp_Fault	2019-03-08 10:46
F64 Heatsink_HighTemp_Fault	2019-03-08 10:45

This page show Inverter ID, Inverter version and alarm codes.

HMI: LCD version

MAIN: Control board FW version

12. Battery Maintenance

To maintain the system safely and efficiently, servicing of batteries should be performed or supervised by personnel knowledgeable about batteries and the required precautions. Before any work on batteries, please carefully read and comply with the following safety requirements:

1. Follow safety precautions, use tools with insulated handles, and wear personal protective equipment, such as rubber gloves and boots.
2. Do not wear jewelry, watches and other metal jewelry.
3. A battery can present a risk of electrical shock and high short-circuit current. Under no circumstances, do not touch the high pressure positive and negative poles of the energy storage system with both hands.
4. Before maintaining batteries, turn off all switches, especially in bypass mode.
5. Do not wash the product directly with water. Use a vacuum cleaner if necessary.
6. Cables should be inserted and removed in accordance with regulations. Violent or brute force operations are prohibited.
7. After the maintenance is complete, clean the tools and materials in time, and check whether metal objects remain inside or on the top of the product.
8. When replacing batteries, replace with the same type and number of batteries or battery packs.
9. Do not dispose of batteries in a fire. The batteries may explode.
10. Do not open or damage batteries. Released electrolyte is harmful to the skin and eyes. It may be toxic.
11. Disconnect charging source prior to connecting or disconnecting battery terminals.
12. Determine if battery is inadvertently grounded. If inadvertently grounded, remove source from ground. Contact with any part of a grounded battery can result in electrical shock. The likelihood of such shock can be reduced if such grounds are removed during installation and maintenance (applicable to equipment and remote battery supplies not having a grounded supply circuit).
13. If you have any questions about the operation and maintenance of this product, please contact Deye ESS customer service center. Do not operate without authorization.

13. Fault Content

13.1 Fault Information and Processing

The energy storage inverter is designed according to the grid-connected operation standard and meets the safety requirements and electromagnetic compatibility requirements. Before leaving the factory, the inverter undergoes several rigorous tests to ensure that the inverter can operate reliably.

If any of the fault messages listed in Chart12-1 appear on your inverter and the fault has not been removed after restarting, please contact your local dealer or service center. You need to have the following information ready.

1. Inverter serial number;
2. Distributor or service center of the inverter;
3. on-grid power generation date;
4. The problem description (including the fault code and indicator status displayed on the LCD) is as detailed as possible.
5. Your contact information. In order to give you a clearer understanding of the inverter's fault information, we will list all possible fault code and their descriptions when the inverter is not working properly.

13.2 Low Voltage Fault Analysis Method

The cloud platform or LCD displays the hexadecimal value of the original fault. Each Bit indicates a fault. 1 indicates yes and 0 indicates none.

0x0000 0x0000
0x0000 0x0000

The preceding data corresponds to CAN packets in the PCS CAN communication protocol.
Corresponding CAN packet:

byte0, 1 byte2, 3
byte4, 5 byte6, 7

For example, parsing red fonts fails and converting them to binary
That is: byte0: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

Bit7	Bit6	Bit5	Bit4	Bit	Bit2	Bit1	Bit0
Cell under temperature (Charge) (Errcode:8)	Cell over temperature (Charge) (Errcode:7)	Discharge Over Current (Errcode:6)	Charge over Current (Errcode:5)	Reserved	Reserved	Cell under voltage (Errcode:2)	Cell over Voltage (Errcode:1)

Byte1: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Reserved	Reserved	Heating film over Temperature (Errcode:14)	Mos over temperature (Errcode:13)	Cell temperature over Difference (Errcode:12)	Cell voltage over difference (Errcode:11)	Reserved	Reserved

For example, parse blue font failure and convert it to binary

That is: byte2: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
AFE-SCDL (Errcode:24)	Reserved	Reserved	Reserved	Reserved	AFE-OCDL/OCD1/OCD2 (Errcode:19)	Reserved	Reserved

Byte3: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Master Address Repeat (Errcode:31)	PCS communication Fail (Errcode:)	Internal communication Fail (Errcode:30)	EEPROM error (Errcode:29)	Mosfet short circuit (Errcode:28)	Temperature Sampling fail (Errcode:27)	Cell voltage Sampling fail (Errcode:26)	AFE communication Fail (Errcode:25)

For example, parse the purple font failure and convert it to binary.

That is: byte4: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

Bit7	Bit6	Bit5	Bit4	Bit	Bit2	Bit1	Bit 0
Reserved							

Byte5: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit 0
Heat Error (Errcode:2)	Heat Mos Adhesion (Errcode:1)	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved

For example, parse the green font failure and convert it to binary
 That is: byte6: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
CHG_VOLT _LOW (Errcode:8)	TEMP_OPE N_WIRE_F AIL (Errcode:7)	VOLT_OP EN_WIRE_ FAIL (Errcode:6)	FUSE Blown (Errcode:5)	OverTermi nalTemp	Charge Inversed (Errcode:4)	Pre Charge Failed (Errcode:3)	OverConnect Temp

Byte7: Disable

Error code	Description	Solutions
F08	GFDI_Relay_Failure	1. When inverter is in Split phase(120/240Vac) or three-phase system (120/208Vac) system, the back up load port N line needs to connect ground; 2. If the fault still exists, please contact us for help.
F13	Working mode change	1. When the grid type and frequency changed it will report F13; 2. When the battery mode was changed to "No battery" mode, it will report F13; 3. For some old FW version, it will report F13 when the system work mode changed; 4. Generally, it will disappear automatically when shows F13; 5. If still same, and turn off the DC switch and AC switch and wait for one minute and then turn on the DC/A/C switch; 6. Seek help from us, if can not go back to normal state.
F18	AC over current fault of hardware	AC side over current fault 1. Please check whether the back up load power and common load power are within the range; 2. Restart and check whether it is in normal; 3. Seek help from us, if can not go back to normal state.
F20	DC over current fault of the hardware	DC side over current fault 1. Check PV module connect and battery connect; 2. When in the off-grid mode, the inverter startup with big power load, it may report F20. Please reduce the load power connected; 3. Turn off the DC switch and AC switch and then wait one minute, then turn on the DC/A/C switch again; 4. Seek help from us, if can not go back to normal state
F22	Tz_EmergStop_Fault	Please contact your installer for help.
F23	AC leakage current is transient over current	Leakage current fault 1. Check PV side cable ground connection. 2. Restart the system 2~3 times. 3. If the fault still exists, please contact us for help.
F24	DC insulation impedance failure	PV isolation resistance is too low 1. Check the connection of PV panels and inverter is firmly and

		correctly; 2.Check whether the PE cable of inverter is connected to ground; 3.Seek help from us,if can not go back to normal state.
F26	The DC busbar is unbalanced	1.Please wait for a while and check whether it is normal; 2.When the hybrid in split phase mode, and the load of L1 and load of L2 is big different,it will report the F26 . 3.Restart the system 2~3 times. 4.Seek help from us,if can not go back to normal state .
F29	Parallel CANBus fault	1.When in parallel mode,check the parallel communication cable connection and hybrid inverter communication address setting; 2.During the parallel system start up period,inverters will report F29. when all inverters are in ON status,it will disappear automatically; 3.If the fault still exists,please contact us for help.
F34	AC Over current fault	1.Check the backup load connected,make sure it is in allowed power range; 2.If the fault still exists,please contact us for help.
F35	No AC grid	No Utility 1.Please confirm grid is lost or not; 2.Check the grid connection is good or not; 3.Check the switch between inverter and grid is on or not; 4.Seek help from us,if can not go back to normal state .
F41	Parallel system stop	1.Check the hybrid inverter working status.If there's 1 pcs hybrid inverter is in OFF status,the other hybrid inverters may report F41 fault in parallel system. 2.If the fault still exists,please contact us for help.
F42	AC line low voltage	Grid voltage fault 1.Check the AC voltage is in the range of standard voltage in specification; 2.Check whether grid AC cables are firmly and correctly connected; 3.Seek help from us,if can not go back to normal state
F47	AC over frequency	Grid frequency out of range 1.Check the frequency is in the range of specification or not; 2.Check whether AC cables are firmly and correctly connected; 3.Seek help from us,if can not go back to normal state .
F48	AC lower frequency	Grid frequency out of range 1.Check the frequency is in the range of specification or not; 2.Check whether AC cables are firmly and correctly connected; 3.Seek help from us,if can not go back to normal state .
F56	DC busbar voltage is too low	Battery voltage low 1.Check whether battery voltage is too low; 2.If the battery voltage is too low,using PV or grid to charge the battery; 3.Seek help from us,if can not go back to normal state .
F58	BMS communication fault	1.it tells the communication between hybrid inverter and battery BMS disconnected when "BMS_Err-Stop" is active; 2.if don't want to see this happen,you can disable "BMS_Err-Stop" item on the LCD; 3.If the fault still exists,please contact us for help.
F63	ARC fault	1.ARC fault detection is only for US market; 2.Check PV module cable connection and clear the fault; 3.Seek help from us,if can not go back to normal state .

F64	Heat sink high temperature failure	Heat sink temperature is too high 1.Check whether the work environment temperature is too high; 2.Turn off the inverter for 10mins and restart; 3.Seek help from us,if can not go back to normal state.
-----	------------------------------------	--

Chart 12-1 Fault information

Under the guidance of our company,customers return our products so that our company can provide service of maintenance or replacement of products of the same value.Customers need to pay the necessary freight and other related costs.Any replacement or repair of the product will cover the remaining warranty period of the product.If any part of the product or product is replaced by the company itself during the warranty period,all rights and interests of there placement product or component belong to the company.

Factory warranty does not include damage due to the following reasons:

- Damage during transportation of equipment;
- Damage caused by incorrect installation or commissioning;
- Damage caused by failure to comply with operation instructions,installation instructions or maintenance instructions;
- Damage caused by attempts to modify,alter or repair products;
- Damage caused by incorrect use or operation;
- Damage caused by insufficient ventilation of equipment;
- Damage caused by failure to comply with applicable safety standards or regulations;
- Damage caused by natural disasters or force majeure (e.g.floods,lightning,over voltage,storms,fires,etc.)

In addition,normal wear or any other failure will not affect the basic operation of the product.Any external scratches,stains or natural mechanical wear does not represent a defect in the product.

14.FAQ

Q1: What type of battery does the product use? Is it safe?

Use high-quality lithium iron phosphate batteries. system multiple protection strategy, charge overload protection, discharge overload protection, to ensure the safe and normal operation of the battery.

Q2: How to judge the product in charge and discharge?

When charging, the LCD display displays the remaining charging time, the power indicator chart outside the battery power percentage starts to rotate, and displays the input power. LED lights flicker on charge and discharge.

Q3: How to clean this product?

Please use a dry, soft, clean cloth or paper towel to wipe the product.

Q4: How to store products?

When storing please turn off the power supply of the product, and then store the product in a dry, ventilated and suitable temperature environment. Do not store the product in an environment that is not conducive to the storage of the product, such as humidity, high temperature, large dust and high salinity, So as to avoid damage to the product. For long-term storage, it is recommended that the battery of this product be discharged to 50% and then charged to 100% for about one month. To extend the service life of this product.

15. After-Sales Service

During the use of the product, according to the normal operation of the user manual can not discharge the fault, please contact the dealer in time, and give clear feedback to the after-sales personnel: product model, purchase date, contact phone number, fault phenomenon.

1. Limited warranty, refer to the relevant warranty statement for details. In order to determine the date of purchase, consumers are asked to save the purchase of relevant bills and online shopping records.

2. During the warranty period, due to the damage caused by the product process or materials and non-human reasons, the company undertakes free maintenance and parts replacement obligations.

3. The following conditions are not covered by the warranty:

① unauthorized disassembly and maintenance;

② product performance failure due to human reasons;

③ Damage caused by irresistible factors such as natural disasters, lightning, accidents;

④ Appearance damage after use is not covered by warranty;

16. EU Declaration of Conformity

Within the scope of the EU directives

Restriction of the use certain hazardous substances 2011 / 65 / EU (ROHS)

Radio Equipment Directive 2014/53/EU (RED)

NINGBO DEYE ESS TECHNOLOGY CO., LTD. confirms herewith that the products described in this document are in compliance with the fundamental requirements and other relevant provisions of the above mentioned directives. The entire EU Declaration of Conformity and certificate can be found at <https://deyeess.com>.

EU Declaration of Conformity

Product: All-in-one Energy Storage System

System model: RW-F5.3-1H3、RW-F5.3-2H3

Name and address of the manufacturer: NINGBO DEYE ESS TECHNOLOGY CO., LTD.

No.568, South Rixian Road, Binhai Economic Development Zone, Cixi, Ningbo, Zhejiang, P.R.China

This declaration of conformity is issued under the sole responsibility of the manufacturer. Also this product is under manufacturer's warranty.

This declaration of conformity is not valid any longer: if the product is modified, supplemented or changed in any other way, as well as in case the product is used or installed improperly.

The object of the declaration described above is in conformity with the relevant Union harmonization legislation:

The restriction of the use of certain hazardous substances (RoHS) Directive 2011/65/EU and the Radio Equipment Directive (RED) 2014/53/EU.

References to the relevant harmonized standards used or references to the other technical specifications in relation to which conformity is declared:

EN 62109-1:2010	●
EN 62109-2:2011	●
EN 62920:2017/A1:2021	●
ETSI EN 300 328 V2.2.2(2019-07)	●
ETSI EN 301 489-1 V2.2.3(2019-11)	●
ETSI EN 301 489-17 V3.2.4(2020-09)	●
EN 50665:2017	●
EN IEC 62311:2020	●
EN 55011:2016/A2:2021	●
EN IEC 61000-6-1:2019	●
EN IEC 61000-6-3:2021	●
EN IEC 61000-6-2:2019	●
EN IEC 61000-6-4:2019	●
EN IEC 61000-3-2:2019+A1:2021	●
EN 61000-3-3:2013/A2:2021/AC:2022-01	●
EN IEC 61000-3-11:2019	●
EN 61000-3-12:2011	●

Nom et Titre / Name and Title:

KunLei Yu
Test Manager

KL Yu.

Au nom de / On behalf of:

NINGBO DEYE ESS TECHNOLOGY CO., LTD.

Date / Date (yyyy-mm-dd):

2024-8-14

A / Place :

Ningbo, China

宁波德业储能科技有限公司

EU DoC-v1

NINGBO DEYE ESS TECHNOLOGY CO., LTD

No.568, South Rixian Road, Binhai Economic Development Zone, Cixi, Ningbo, Zhejiang, P.R.China

NINGBO DEYE ESS TECHNOLOGY CO., LTD

Add.: No.568, South Rixian Road, Binhai Economic Development Zone,
Cixi, Ningbo, Zhejiang, P.R.China
Tel: 0086-574-63787513
Fax: 0086-574-86228852
E-mail: service@deye.com.cn
Web.: www.deyeess.com